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Abstract
This document gathers a selection of original exercises in fundamental physics,

designed with a transversal and progressive perspective, from the third year of under-
graduate studies to the first year of a Master’s degree. Each exercise is accompanied by
a detailed solution (when available), and is embedded in a rigorous historical, theoreti-
cal, or practical context. Topics covered include special relativity, quantum mechanics,
statistical physics, electrodynamics, and incursions into mathematical physics. A clas-
sification by level is proposed to guide the reader’s progression.
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Chapter 1

Introduction

This document is a compilation of exercises in Fundamental Physics that I designed with passion,
in the spirit of an end-of-L3 / M1 course, and beyond. The aim is twofold: to provide rigorous,
inspiring problems that highlight the formal and conceptual beauty of physics, and to offer a solid
foundation for students wishing to deepen their understanding of major classical and modern the-
ories. I hope to share my enthusiasm for physics that goes beyond what is typically covered in
class, drawing on concepts that span multiple areas of physics.

Each exercise involves specific concepts (indicated in parentheses, such as (SR) for Special Relativ-
ity, (QM) for Quantum Mechanics, etc.) and is gradually supplemented with a detailed correction,
accessible by clicking on the "(Correction)" link. Exercises are rated with stars (see 2.1), and you
are free to start with the one that intrigues you the most.

As a first-year Master’s student in Fundamental Physics at Sorbonne University (Pierre and Marie
Curie campus), I want this collection to remain dynamic: solutions will be added regularly. Lastly,
in the correction section, by clicking on the exercise titles (either in the heading or at the beginning
of the solution), you can return to the corresponding exercise.

I hope that by reading and working through these exercises, you will find as much enjoyment as I
had in writing them.
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Chapter 2

Information

2.1 Notations

1. Vector quantities are written in bold, except for the operator ∇, which is never in bold.
Four-vector quantities (in relativity) are written with a Greek letter, in superscript for con-
travariant components, and in subscript for covariant ones.
Example: v for velocity, ∇p for the pressure gradient (which is a vector!), and xµ for space-
time position in contravariant form. Conversely, in Quantum Mechanics, vectors are denoted
using kets, and operators in bold.
Example: |ψ⟩ for a state vector ψ and H for the Hamiltonian.

2. The notation d denotes the differential operator.

3. The notation ∂u implicitly means ∂
∂u if u is a variable, and ∂µ = ∂

∂xµ , ∂
µ = ∂

∂xµ
in relativity.

4. ∇ =

 ∂
∂x
∂
∂y
∂
∂z

 in Cartesian coordinates, is an operator that properly defines the gradient, di-

vergence, and curl. Indeed, ∇f is the gradient of f , ∇ · F is the divergence of F, and ∇ × F is
the curl of F. The operator ∂µ∂µ = □ is the d’Alembertian, invariant under Lorentz trans-
formations.

5. The notation ẋ denotes a time derivative: ẋ = dx
dt . In a relativity exercise, the preferred

notation will be ẋµ = dxµ

dτ , where τ is the proper time, and v = dx
dt .

6. The notation f ′ denotes a derivative with respect to the variable x, i.e., f ′ = df
dx .

7. The notation [A] indicates the physical unit of the quantity A.

8. The symbols R,C,N denote the sets of real, complex, and natural numbers, respectively.

9. The metric used in special relativity is gµν = (−,+,+,+). We also recall that aµbµ =
gµνa

µbν = gµνaµbν .

10. Stars indicate the difficulty level of the exercises, ranging from 1: ⋆ to 5 stars: ⋆⋆⋆⋆⋆.
The difficulty assessment is based on the length, technical and mathematical complexity, and
the academic level (L3, M1, M2) needed to be comfortable with the concepts involved.

11. The symbol △ indicates that the solution is still being written.
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Chapter 2. Information 2.2. Fundamental Constants

2.2 Fundamental Constants

Constant Exact value Units

Planck constant h = 6.62607015 × 10−34 J s
Dirac constant ℏ = h

2π = 1.054571817 × 10−34 J s
Speed of light c = 299792458 m s−1

Elementary charge e = 1.602176634 × 10−19 C
Electron mass me = 9.1093837015 × 10−31 kg
Proton mass mp = 1.67262192369 × 10−27 kg
Neutron mass mn = 1.675 × 10−27 kg
Vacuum permittivity ε0 = 8.854187817 × 10−12 F m−1

Vacuum permeability µ0 = 4π × 10−7 N A−2

Gravitational constant G = 6.67430 × 10−11 m3 kg−1 s−2

Boltzmann constant kB = 1.380649 × 10−23 J K−1

Avogadro number NA = 6.02214076 × 1023 mol−1

Ideal gas constant R = 8.314462618 J mol−1 K−1

Reference temperature (0°C) T0 = 273.15 K
Sun’s mass M⊙ = 1.98892 × 1030 kg

Table 2.1: Fundamental physical constants with their exact values.
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Chapter 2. Information 2.3. Formulary

2.3 Formulary

2.3.1 Maxwell’s Equations

∇ · E = ρ

ε0
(Gauss’s law)

(2.1)
∇ · B = 0 (Absence of magnetic monopoles)

(2.2)

∇ × E = −∂B
∂t

(Faraday’s law)
(2.3)

∇ × B = µ0J + µ0ε0
∂E
∂t

(Ampère-Maxwell law)
(2.4)

∇ × A = B, −∂tA − ∇φ = E (Relation between the vector potential and the EM field)
(2.5)

D = ε0E + P (Electric displacement)
(2.6)

P = ε0χeE (Polarization)
(2.7)

H = 1
µ0

B − M (Auxiliary magnetic field)

(2.8)
M = χmH (Magnetization)

(2.9)
εr = 1 + χe, µr = 1 + χm (Relations to susceptibilities)

(2.10)

v = 1
√
µε

= c
√
εrµr

= c

n
(Wave speed in the medium)

(2.11)

□E = µ0ε0
∂2E
∂t2

− ∇2E = 0 (Wave equation in vacuum)
(2.12)

γ = σ + iωε (Complex conductivity)
(2.13)

P = q2a2

6πε0c3 (Larmor power)

(2.14)

S = 1
µ0

E × B (Poynting vector)

(2.15)
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Chapter 2. Information 2.3. Formulary

2.3.2 Special Relativity

E = γmc2 =
√
p2c2 +m2c4 (Relativistic energy) (2.16)

γ = 1√
1 − v2

c2

(Lorentz factor) (2.17)

x′ = γ(x− vt) (Lorentz transformation) (2.18)

t′ = γ
(
t− vx

c2

)
(Time transformation) (2.19)

β = v

c
(2.20)

p = γmv (Relativistic momentum vector) (2.21)
p = ℏk (Photon momentum vector) (2.22)
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Chapter 2. Information 2.3. Formulary

2.3.3 Quantum Mechanics

P = −iℏ∇ (Momentum operator)

(2.23)

iℏ
∂

∂t
|ψ⟩ = H |ψ⟩ (Schrödinger equation)

(2.24)
[Xi,Pj ] = iℏδij (Canonical commutation relation)

(2.25)
⟨ψ| A |ψ⟩ = ⟨A⟩ (Expectation value)

(2.26)
(∆A)2 = ⟨ψ| (A − ⟨A⟩)2 |ψ⟩ (Variance of an observable)

(2.27)

∆A∆B ≥ 1
2 | ⟨ψ| [A,B] |ψ⟩ | (Heisenberg uncertainty inequality)

(2.28)

U(t) = e−iHt/ℏ (Unitary time evolution)
(2.29)

H |En⟩ = En |En⟩ (Stationary eigenstates)
(2.30)

P(an) = | ⟨an|ψ⟩ |2 (Born rule probability)
(2.31)

X =
√

ℏ
2mω (a + a†), P = i

√
ℏmω

2 (a† − a) (Harmonic oscillator)

(2.32)
[a, a†] = 1 (Commutator)

(2.33)

H = ℏω
(

N + 1
2

)
(Oscillator Hamiltonian)

(2.34)
N = a†a, N |n⟩ = n |n⟩ (Number operator)

(2.35)
Li = εijkXjPk (Orbital angular momentum)

(2.36)
[Ji, Jj ] = iℏεijkJk (Lie algebra of SU(2))

(2.37)
[H,A] = 0 ⇒ A = constant of motion (Symmetry and conservation)

(2.38)
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2.3.4 Statistical Physics

Canonical ensemble (system in contact with a thermostat, with fixed number of particles)

β = 1
kBT

(Temperature energy) (2.39)

Z =
∑
n

e−βEn (Partition function) (2.40)

Pn = e−βEn

Z
(Occupation probability of level n) (2.41)

⟨E⟩ =
∑
n

EnPn = −∂ lnZ
∂β

(Mean energy) (2.42)

∆E2 = ⟨E2⟩ − ⟨E⟩2 = ∂2 lnZ
∂β2 (Energy fluctuation) (2.43)

S = −kB
∑
n

Pn lnPn (Shannon statistical entropy) (2.44)

F = −kBT lnZ (Helmholtz free energy) (2.45)

S = −
(
∂F

∂T

)
V

(Link with thermodynamics) (2.46)

Grand canonical ensemble (system in contact with a particle and heat reservoir):

Z =
∞∑
N=0

∑
n

e−β(En,N −µN) (Grand partition function) (2.47)

Z =
∏
i

ξi (Factorization over states) (2.48)

ξi =
∑
ni

e−β(εi−µ)ni (Partition function for state i) (2.49)

J = −kBT ln Z (Grand potential) (2.50)

J = −kBT
∑
i

ln ξi (Grand potential, factorized form) (2.51)

P = −
(

J
V

)
(Pressure) (2.52)

⟨N⟩ = 1
β

∂ ln Z
∂µ

(Mean number of particles) (2.53)

⟨E⟩ = −∂ ln Z
∂β

+ µ⟨N⟩ (Mean energy) (2.54)

S = −
(
∂J
∂T

)
V,µ

(Entropy) (2.55)

F = ⟨E⟩ − TS = J + µ⟨N⟩ (Link with free energy) (2.56)
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2.3.5 Analytical Mechanics

L = T − V (Lagrangian)

(2.57)
d
dt

(
∂L
∂q̇α

)
− ∂L
∂qα

= 0 (Lagrange equations)

(2.58)

L′ = L + dF (q, t)
dt (Non-uniqueness of the Lagrangian)

(2.59)

S[q(t)] =
∫ t2

t1

L(q, q̇, t) dt (Action)

(2.60)
δS = 0 (Principle of least action)

(2.61)

pα = ∂L
∂q̇α

(Conjugate momentum)

(2.62)
∂L
∂qα

= 0 ⇒ pα = const. (Cyclic variable)

(2.63)
∂L
∂t

= 0 ⇒
∑
α

q̇αpα − L = const. (Beltrami identity)

(2.64)

H(q, p, t) =
∑
α

pαq̇α − L (Hamiltonian)

(2.65)

q̇α = ∂H
∂pα

, ṗα = − ∂H
∂qα

(Hamilton’s equations)

(2.66)

{f, g} =
∑
α

(
∂f

∂qα

∂g

∂pα
− ∂f

∂pα

∂g

∂qα

)
(Poisson bracket)

(2.67)
df
dt = {f,H} + ∂f

∂t
(Time evolution)

(2.68)

Qα = ∂F

∂Pα
, pα = ∂F

∂qα
(Canonical transformation via F2(q, P, t))

(2.69)

K(Q,P, t) = H(q, p, t) + ∂F

∂t
(New Hamiltonian)

(2.70)
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2.3.6 Subatomic Physics

dΩ = sin θ dθ dφ (Elementary solid angle) (2.71)

σ =
∫ dσ

dΩdΩ (Total cross section) (2.72)

dσ
dΩ = |f(θ, φ)|2 (Differential cross section) (2.73)

dσ
dΩ = 1

2 sin θ

∣∣∣∣db2

dθ

∣∣∣∣ (Classical differential cross section) (2.74)

B = [Zmp + (A− Z)mn −M(A,Z)] c2 (Nuclear binding energy) (2.75)
Q = [minitial −mfinal] c2 (Energy released in a reaction) (2.76)

N(t) = N0e
−λt (Mean radioactive decay law) (2.77)

τ = 1
λ
, T1/2 = ln 2

λ
(Mean lifetime and half-life) (2.78)

dNi
dt = −λiNi + λi−1Ni−1 (Decay chain) (2.79)

2.3.7 Wave Optics

j2 = −1 (Imaginary unit) (2.80)
ψ(x) = ψ0e

jkδ (Monochromatic plane wave) (2.81)

dψ = ψ0e
jφ(x)dx (Diffracted field element) (2.82)

ψ(M) =
∫
ψ0(x)ejφ(x)dx (Diffracted field – Fresnel integral) (2.83)

φ(x) = (x− x′)2

2z (Phase in the Fresnel approximation) (2.84)

I(x) = I0

[
1 + cos

(
2π
λ
δ(x)

)]
(Two-wave interference) (2.85)

I =

∣∣∣∣∣
∫ B

A

dψ

∣∣∣∣∣
2

(Superposition principle – intensity) (2.86)

LAB =
∫ B

A

n(r)ds (Optical path) (2.87)

φ = kδ = 2π
λ
LAB (Associated phase shift) (2.88)

i = λD

a
(Fringe spacing in Fraunhofer approximation) (2.89)
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2.3.8 Thermodynamics

dU = TdS − pdV + µdN (First law) (2.90)

dS ≥ δQ

T
(Second law) (2.91)

F = U − TS (Helmholtz free energy) (2.92)
G = U + pV − TS = µN (Gibbs free energy) (2.93)
H = U + pV (Enthalpy) (2.94)
pV = NkBT = nRT (Ideal gas law) (2.95)

U = f

2NkBT (Internal energy, f degrees of freedom) (2.96)

= 3
2NkBT (Monoatomic ideal gas) (2.97)

= 5
2NkBT (Diatomic ideal gas at high T ) (2.98)

CV =
(
∂U

∂T

)
V

= f

2NkB (Heat capacity at constant volume) (2.99)

CP = CV +NkB = f + 2
2 NkB (Heat capacity at constant pressure) (2.100)

γ = CP
CV

= f + 2
f

(Adiabatic index) (2.101)

µ =
(
∂G

∂N

)
T,p

(Chemical potential) (2.102)

p = −
(
∂F

∂V

)
T

(Pressure from free energy) (2.103)

S = −
(
∂F

∂T

)
V

(Entropy from free energy) (2.104)(
∂S

∂V

)
T

=
(
∂p

∂T

)
V

(Maxwell relation) (2.105)(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(Maxwell relation) (2.106)(
∂U

∂S

)
V

= T (Definition of temperature) (2.107)(
∂U

∂V

)
S

= −p (Definition of pressure) (2.108)

dp
dz = −ρg (Hydrostatic equilibrium) (2.109)

p(z) = p0e
− mgz

kB T (Isothermal atmosphere) (2.110)
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Cylindrical coordinates:

∇f = ∂f

∂r
er + 1

r

∂f

∂θ
eθ + ∂f

∂z
ez (2.111)

∇ · A = 1
r

∂

∂r
(rAr) + 1

r

∂Aθ
∂θ

+ ∂Az
∂z

(2.112)

∇ × A =
(

1
r

∂Az
∂θ

− ∂Aθ
∂z

)
er (2.113)

+
(
∂Ar
∂z

− ∂Az
∂r

)
eθ (2.114)

+
(

1
r

∂(rAθ)
∂r

− 1
r

∂Ar
∂θ

)
ez (2.115)

Spherical coordinates:

∇f = ∂f

∂r
er + 1

r

∂f

∂θ
eθ + 1

r sin θ
∂f

∂ϕ
eϕ (2.116)

∇ · A = 1
r2

∂

∂r
(r2Ar) + 1

r sin θ
∂

∂θ
(sin θAθ) + 1

r sin θ
∂Aϕ
∂ϕ

(2.117)

∇ × A = 1
r sin θ

(
∂

∂θ
(Aϕ sin θ) − ∂Aθ

∂ϕ

)
er (2.118)

+ 1
r

(
1

sin θ
∂Ar
∂ϕ

− ∂

∂r
(rAϕ)

)
eθ (2.119)

+ 1
r

(
∂

∂r
(rAθ) − ∂Ar

∂θ

)
eϕ (2.120)

2.3.9 General Relativity

ds2 = gµνdxµdxν (Spacetime interval) (2.121)

Γρµν = 1
2g

ρσ(∂µgνσ + ∂νgµσ − ∂σgµν) (Christoffel symbol) (2.122)

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (Riemann tensor) (2.123)

Rµν = Rρµρν (Ricci tensor) (2.124)
R = gµνRµν (Ricci scalar) (2.125)

Gµν = Rµν − 1
2Rgµν (Einstein tensor) (2.126)

S = 1
16πG

∫
R

√
−g d4x+ Smat (Einstein-Hilbert action) (2.127)

δS = 0 ⇒ Gµν = 8πGTµν (Einstein field equations) (2.128)

Tµν = − 2√
−g

δSmat

δgµν
(Energy-momentum tensor) (2.129)

d2xλ

dτ2 + Γλµν
dxµ

dτ
dxν

dτ = 0 (Geodesic equation) (2.130)

∇µT
µν = 0 (Local energy conservation) (2.131)

√
−g d4x (Invariant volume element) (2.132)

det(gµν) = g (Determinant of the metric) (2.133)
(2.134)
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2.3.10 Trigonometric identities

sin2(θ) + cos2(θ) = 1, 1 + tan2(θ) = 1
cos2(θ) . (2.135)

Addition formulas

sin(a± b) = sin(a) cos(b) ± cos(a) sin(b), (2.136)

cos(a± b) = cos(a) cos(b) ∓ sin(a) sin(b). (2.137)

Double-angle formulas

sin(2θ) = 2 sin(θ) cos(θ), (2.138)

cos(2θ) = cos2(θ) − sin2(θ) = 2 cos2(θ) − 1 = 1 − 2 sin2(θ). (2.139)

These formulas are very useful for variable changes in integration.

Expressions of sin(x), cos(x), and tan(x) in terms of t = tan
(

x
2

)
sin(x) = 2t

1 + t2
, cos(x) = 1 − t2

1 + t2
, tan(x) = 2t

1 − t2
. (2.140)

Variable substitution t = tan
(

x
2

)
This change of variable is often used to simplify trigonometric integrals. We also have:

dx = 2
1 + t2

dt. (2.141)

2.4 Legend of thematic notations

• (SR): Special Relativity

• (QM): Quantum Mechanics

• (EM): Electromagnetism

• (AM): Analytical Mechanics

• (SM): Statistical Mechanics

• (SP): Subatomic Physics

• (WO): Wave Optics

• (TD): Thermodynamics

• (GR) : General Relativity
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2.5 Suggested paths depending on your level

To help readers navigate this dense collection of exercises, here are a few suggested paths based
on your level and goals. Of course, every student is free to explore the problems that inspire them.

Level Recommended exercises
Early Bachelor Year 3 3.1 – Two-body problem

3.2 – Rutherford cross section
3.4 – Pulsed magnetic field machine
3.13 – Electrodynamic instability of the classical atom

End of Bachelor / Beginning of Master 1 3.3 – Cherenkov effect
3.5 – Metric on a sphere
3.6 – Blackbody radiation
3.10 – Hydrogen atom and radial equation
3.12 – Pöschl–Teller potential
3.14 - Geodesics in a Dispersive Optical Medium
3.15 - Bose-Einstein Condensation
3.16 - Decay Chain

Advanced Master 1 3.7 – Minimization of gravitational potential
3.8 – Relativistic charged particle
3.9 – Relativistic hydrodynamics
3.11 – Towards a relativistic formalism
3.17 - From the Principle of Least Action to Einstein’s
Equations
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Chapter 3

Exercises

This collection of exercises was designed with the ambition to go beyond mere mechanical practice
of methods. Each problem aims to highlight a certain form of mathematical elegance or physical
depth — a careful eye will discover, behind the equations and techniques, a subtle coherence, some-
times even a formal beauty. Some exercises are demanding, both in their length and structure: they
are sometimes inspired by competitive exams or realistic physical situations, and may require sev-
eral hours of reflection. Their goal is not only to reinforce technical skills, but to make one feel,
through progressive resolution, the deep unity between mathematical rigor and the physical reality
it describes. This chapter is dynamic: new problems will be regularly added in the same spirit of
elegance, clarity, and depth.

3.1 Two-body problem and quantization of the Bohr atom
[3] (AM) ⋆⋆⋆

(Solution)

Nucleus e−r1

Figure 3.1: Diagram of the Bohr atom.

Consider a system of two particles with masses m1 and m2 interacting via a central potential
V (r) = −C

r = −ϑ2

r
1, where r is the distance between the two particles and C is a real constant.

Here we use the Coulomb potential, but one could just as well use a gravitational potential. We
will study in detail the bound states of the hydrogen atom according to the old quantum theory

1We define ϑ2 = e2

4πε0
.
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Chapter 3. Exercises 3.1. Two-body problem and quantization of the Bohr atom

and, in particular, derive the energy associated with a given trajectory of the electron of mass m1
around the nucleus of mass m2.

3.1.1 Center of mass

Let r1, r2 be the position vectors of the electron and the nucleus relative to an arbitrary reference
frame, and v1, v2 their respective velocities.

1. Write the Lagrangian L(r1, r2, v1, v2).

2. Let R be the center-of-mass position vector and r = r1 − r2. Show that the Lagrangian can
be written as:

L(r1, r2, v1, v2) = LG(V) + Lr(r, v) (3.1)

3. Explain why the total angular momentum about the center of mass G, denoted J, is a con-
served quantity. Deduce a conclusion about the trajectory.

From here on, we examine only the internal motion through Lr in polar coordinates (r, θ) in the
plane perpendicular to J.

3.1.2 Integration of the equations of motion

1. Write the Hamiltonian H for the internal motion and derive Hamilton’s equations. Recover
the conservation of angular momentum and interpret the equation involving only r, ṙ.

2. Determine the relationship between r and θ, i.e., the trajectory. To do so, eliminate time from
the previous equations by setting u = 1

r , and show that:

d2u

dθ2 + u = K, K = µϑ2

J2 (3.2)

3. Finally, deduce that the trajectory is a conic, whose equation can always be written in the
form:

r(θ) = p

1 + ε cos θ (3.3)

Give the expression of p, the conic parameter, and ε, the eccentricity. Check how the value
of ε relative to 1 determines the nature of the corresponding state (bound or unbound).

3.1.3 Bohr quantization

In this part, we consider only bound states (E < 0) and apply Bohr’s rules to select among all
classically possible trajectories. These rules involve the action variables Jθ, Jr and are written:

Jθ :=
∮
pθ dθ = nθh (3.4)

Jr :=
∮
pr dr = nrh (3.5)

nθ, nr ∈ Z (3.6)

1. Determine the possible values of the angular momentum J as a consequence of the quanti-
zation of Jθ . Specify the possible values of the integer nθ .

25



Chapter 3. Exercises 3.1. Two-body problem and quantization of the Bohr atom

2. Quantize Jr and deduce the relation between ε and the integers nr, nθ2. Given:∫ 2π

0

1
1 + ε cos θ dθ = 2π√

1 − ε2
(3.7)

3. Deduce that the energy E is quantized, with n ∈ N∗ depending on nθ, nr , and that:

En = − µϑ4

2n2ℏ2 (3.8)

2At first glance, one might say that Jr = 0; an integration by parts is necessary.
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3.2 Rutherford Scattering Cross Section [4] (SP) ⋆⋆

(Solution)

We consider the same situation as in the previous exercise: two particles, one of which is fixed,
interacting through a potential of the form V (r) = C

r . Here, C = Qq
4πε0

, Q = Ze, q = 2e. We will
use some results from the previous exercise, so it is recommended to complete that one first.

3.2.1 Deflection of a charged particle by an atomic nucleus

We work in the polar coordinate system (r, φ), perpendicular to the angular momentum, since the
motion is planar. The alpha particle arrives with initial velocity v0. We assume limt→−∞ φ(t) = π.

1. Determine the non-zero component of J as a function of r, φ. Also determine it in terms of
b, v0, where b is the impact parameter.

2. Write the equation of motion. Decompose v = ṙ into a vector parallel and one perpendicular
to the polar axis. Deduce that:

mv̇⊥ = C

r2 sinφ (3.9)

3. We want to introduce the deflection angle θ. By integrating the equation, show that:

v0 sin θ = C

mbv0
(cos θ + 1) (3.10)

4. Using some trigonometric identities, deduce that:

tan θ2 = C

2E0b
(3.11)

where E0 = 1
2mv

2
0 .

3.2.2 Rutherford Scattering Cross Section

1. Recall the formula for the differential cross section dσ
dΩ .

2. Deduce that:
dσ
dΩ = C2

16E2
0 sin4 θ

2
(3.12)

3. Deduce that this model is invalid for small deflection angles.

4. Explain why this experiment demonstrates the existence of atomic nucleus.
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3.3 Cherenkov Effect [5] (SR, NP) ⋆⋆⋆

(Solution) The Cherenkov effect occurs when a charged particle travels through a dielectric medium
at a speed v greater than the speed of light in that medium c/n, where n is the refractive index of
the medium.

Before the collision
pq

After the collision

pγ

p’

q θ

Figure 3.2: Diagram of the Cherenkov effect.

The momentum of the charged particle is p before the collision, pγ is the photon momentum after
the collision, and p′ is the particle’s momentum after the collision, (c.f fig 3.2). The angle θ is the
angle between p and pγ . Recall that λ = c

nν .

1. Express pγ in terms of h, ν, c, n. Deduce the relation between pγ and Eγ in a medium with
refractive index n.

2. Write the momentum conservation equation for the elementary process.

3. Using the previous question, express p′2 in terms of the magnitudes of the momenta p, pγ ,
and the angle θ.

4. Write the energy conservation equation.

5. E is the initial energy of the electron. Deduce that:

p′2 = p2 − 2E
c2hν +

p2
γ

n2 (3.13)

6. Express cos θ in terms of p, pγ , E, h, n, c, ν.

7. Show that:
cos θ = c

nv

[
1 + hν

2E (n2 − 1)
]

(3.14)

8. What is the condition for the Cherenkov effect to occur?

9. In which frequency range are the photons emitted?

10. In which direction are the highest-energy photons emitted?

11. All photons are emitted within a cone; what is the half-apex angle ϕ of this cone? Estimate
ϕ for n = 4

3 and v = 4
5c.

12. Compare the minimum kinetic energy required for the particle to produce Cherenkov radi-
ation in the cases of an electron and a proton, for n = 4

3 .
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3.4 Pulsed Magnetic Field Machine (EM) ⋆⋆

(Solution)

The magnetic stimulation machine is a non-invasive technology used in physiotherapy and rehabil-
itation. It works by generating pulsed magnetic fields using a circular coil. In practice, the machine
sends current pulses through the coil, which creates a time-varying magnetic field. According to
Faraday’s law, this variation automatically induces an electric field in the surrounding tissues.

This induced electric field acts directly on the cellular membranes of muscles by activating ion
channels. As a result, an action potential is triggered, leading to muscle contraction. This mech-
anism allows not only for the stimulation of weakened or atrophied muscles, but also improves
blood circulation and reduces pain. Moreover, the absence of direct skin contact makes the treat-
ment comfortable and safe for the patient.

To modelize this phenomen, we consider a circular coil of radiusR carrying a time-varying current:

I(t) = I0e
−t/τ sin(ωt), (3.15)

where I0 is the current amplitude, τ is the damping time constant, andω is the oscillation frequency.
The coil’s axis is assumed to coincide with the z-axis. The coil is considered thin and modeled as
a single loop.

1. Magnetic field of the coil

(a) Assuming the coil behaves like a magnetic dipole, express the magnetic field B along
the central axis (at a distance z from the center) in terms of I(t), R, z, and physical
constants.

(b) Show that for z ≫ R, the field approximates that of a magnetic dipole and give its
asymptotic expression.

2. Induced electric field in biological tissue We model the tissue as a thin conducting disk
of radius a, placed under the coil.

(a) Starting from the local Faraday law:

∇ × E = −∂B
∂t
, (3.16)

express the induced electric field E in terms of dB
dt .

(b) Assuming cylindrical symmetry (purely azimuthal field), derive the expression for the
induced electric field Eθ(r, t) in the plane of the disk, distinguishing the cases r < R

and r > R.

3. Effect on motor neurons A motor neuron is assumed to be activated when the induced
voltage exceeds a threshold Vthresh.

(a) Express V in terms of the parameters of the problem.
(b) Determine a condition on I0, τ , ω, and the geometric parameters to ensure neuron

activation.

4. Effect of pulsed magnetic field on muscles Explain why a pulsed magnetic field, by in-
ducing an electric field in tissues, can provoke muscle contraction. Briefly describe the phys-
iological mechanism (activation of ion channels, generation of an action potential, muscle
contraction).
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3.5 Metric on a Sphere (AM) ⋆⋆⋆

(Solution)

Equator

Geodesic
North Pole

South Pole

Figure 3.3: Diagram of a sphere and its geodesics.

Our goal is to determine the metric on a sphere and its geodesics. This will help us understand the
optimal flight paths for an airplane. Recall that in spherical coordinates, for a fixed radius R,

x = R cosφ sin θ (3.17)
y = R sinφ sin θ (3.18)
z = R cos θ (3.19)

1. Calculate the line element ds =
√

dx2 + dy2 + dz2 as a function of R, θ, and φ.

2. Using the action S =
∫

ds =
∫

Ldλ, where λ is a suitably chosen parameter, and the
variational principle, determine the geodesic equations.

3. Solve the equations by using symmetries. One may use that∫ dα

sin2 α
√

1 − λ2

sin2 α

set u = cotα, (3.20)

∫
− dt√

1 − t2
= arccos t+ C. (3.21)

Show that the geodesics have the following form:

(x, y, z) ∈ S2, ax+ by + cz = 0, (3.22)

that is, the geodesics are intersections between planes passing through the origin and the
sphere, or in other words, arcs of great circles.
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3.6 Blackbody Radiation (PS) ⋆⋆⋆⋆

(Solution)

We seek to obtain the spectral energy density, that is the function

u(ν, T ) = d2W

dνdV
= dN

dν
⟨W ⟩

V
, (3.23)

with W the energy and ⟨W ⟩ the mean energy. We will also work in a historical framework, with-
out using quantum mechanics, which was partly discovered thanks to the results we are about to
demonstrate.

3.6.1 Number of Modes Excited per Frequency Unit

1. Consider a blackbody represented by a cubic cavity of side length L and volume V . Write
down the wave equation for the electric field E inside the cavity.

2. Solve the wave equation. Explain why the field E depends on three modes nx, ny, nz ∈ N∗.

3. Show that

n2
x + n2

y + n2
z = r2 =

(
2L
λ

)2
. (3.24)

4. By counting unit cubes stacked along the axes nx, ny, nz , we can enumerate the total number
N of excited modes.
Each cube can be represented as r = nµeµ. When the cubes are very numerous, that is,
when L is much larger than λ, it suffices to calculate the volume of a sphere of radius r.
However, since the integers are strictly positive, only 1/8 of the total sphere volume is taken.
Also, a factor of 2 must be considered due to the two possible polarization planes of the
electric field E.
Using these data, deduce that

dN
dν = 8πν2

c3 V. (3.25)

3.6.2 Ultraviolet Catastrophe

1. Explain why the ensemble associated with this problem — the calculation of u— corresponds
to the canonical ensemble.

2. Calculate the Hamiltonian of a harmonic oscillator.

3. Give the probability of being in an energy state W . Deduce the partition function Z of a gas
of harmonic oscillators.

4. Show that
⟨W ⟩ = kBT. (3.26)

5. Deduce that
u(ν, T ) = 8πν

2

c3 kBT, (3.27)

and explain the title of this subsection.
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3.6.3 Planck’s Law

The revolutionary idea is to estimate that the photon energy is quantized. Thus, we move from
the idea of a continuous energy distribution to a discrete one. This idea arose from the fact that
the average energy of an oscillator did not depend on the frequency ν. Planck suspected a simple
proportionality relation between W and ν:

Wn = nhν. (3.28)

Then came the idea of quanta, that energy is not continuous but distributed in indivisible packets
called quanta3.

1. Recalculate the partition function Z .

2. Deduce that
u(ν, T ) = 8πν

2

c3
hν

eβhν − 1 (3.29)

with β = 1
kBT

.

Thus, the ultraviolet catastrophe was resolved, and this result agreed perfectly with experiments.
This function became integrable, which later led to Stefan’s law.

3.6.4 Energy Flux Emitted by a Blackbody

Consider a cavity in thermal equilibrium filled with a photon gas at temperature T . The radiation
is isotropic and characterized by a volumetric spectral energy density u(ν), such that

u(ν) dν = electromagnetic energy per unit volume between frequencies ν and ν + dν. (3.30)

Let I be the total intensity (energy flux per unit surface perpendicular to it, integrated over all
directions) emitted by the blackbody.

1. Recall the expression of the monochromatic energy flux emitted in a direction making an
angle θ with respect to the surface normal, in terms of the directional spectral intensity Iν
and the solid angle dΩ.

2. Show that the total energy flux emitted at frequency ν per unit surface is given by

I(ν) =
∫

Ω+

Iν cos θ dΩ, (3.31)

where Ω+ denotes the outgoing hemisphere (0 ≤ θ ≤ π/2).

3. Assuming the radiation is isotropic, i.e., Iν is independent of direction, show that

I(ν) = πIν . (3.32)

4. By integrating over all frequencies, deduce that the total emitted intensity is

I =
∫ ∞

0
πIν dν. (3.33)

3Albert Einstein used Planck’s idea in his annus mirabilis of 1905 to explain the photoelectric effect, which earned him
the Nobel Prize in 1921.
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5. Show that the volumetric spectral energy density u(ν) is given by

u(ν) = 1
c

∫
S2
Iν(n) dΩ. (3.34)

Assuming isotropic radiation, deduce that

u(ν) = 4π
c
Iν . (3.35)

6. Deduce that
I = c

4

∫ ∞

0
u(ν) dν. (3.36)

3.6.5 Stefan’s Law

Stefan’s law states that for a blackbody,

I(T ) = σT 4, (3.37)

where σ is the Stefan–Boltzmann constant. We will prove it.

1. Using the previous parts, show that

I = 2πk4
B

h3c2 T
4
∫ ∞

0

x3

ex − 1dx. (3.38)

2. Verify the convergence of the integral and express it as a series.

3. Finally, prove that

I(T ) = 2π5k4
B

15h3c2T
4. (3.39)

This is recognized as Stefan’s law4

I = σT 4. (3.40)

3.6.6 Application: Solar Mass Loss by Electromagnetic Radiation

Assuming the Sun is a blackbody, determine ṁ, the mass loss per unit time. What is this mass loss
rate in kg · s−1? Knowing that our Sun is approximately 4.6 × 109 years old, estimate how many
Earth masses the Sun has lost so far.

Data: R = 6.96 × 108 m, T = 5775 K, m = 1.98 × 1030 kg, m⊕ = 6 × 1024 kg.

4Hence, σ = 2π5k4
B

15h3c2 , which is rather unexpected.
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3.7 Minimization of the Gravitational Potential by a Ball (AM)
⋆⋆⋆⋆⋆

(Solution)

This exercise involves notions of differential calculus.
We consider the following variational problem: among bounded open domains Ω ⊂ R3 of fixed
volume, find the one minimizing the internal gravitational interaction defined by the func-
tional:

F [Ω] =
∫∫

Ω×Ω

1
|x− x′|

d3xd3x′ (3.41)

Note that this expression is proportional to the gravitational self-interaction potential of a body
with uniform density. Indeed, for x ∈ R3,

U(x) = −G
∫

Ω

ρ

|x− x′|
d3x′ (3.42)

The total gravitational potential energy of the system is then:

E[Ω] = 1
2

∫
Ω
ρU(x) d3x = −G

2 ρ
2
∫

Ω

∫
Ω

1
|x− x′|

d3xd3x′. (3.43)

• We consider a domain Ω ⊂ R3, i.e., a bounded open set of class C2, with boundary ∂Ω.

• The volume of Ω is defined by:
V :=

∫
Ω

d3x (3.44)

• We consider an infinitesimal normal deformation of the boundary of Ω, parametrized by
ε ∈ R, given by:

x 7→ x+ εf(x)n(x), for x ∈ ∂Ω (3.45)

where f ∈ C∞(∂Ω) is a smooth function and n(x) is the outward unit normal vector to ∂Ω.

• The deformed domain is denoted Ωε, the bounded open set obtained by this deformation:

Ωε := {x+ εf(x)n(x) | x ∈ Ω} + o(ε) (3.46)

(The deformation is assumed to be smoothly extended inside Ω to rigorously define Ωε.)

3.7.1 Hadamard’s Formula

Let F : R3 → R be a C1 function, and Ωε a smooth deformation of Ω such that for x ∈ ∂Ω,

x 7→ x+ εf(x)n(x) (3.47)

and assume this deformation extends smoothly to all of Ω.

We want to prove that:

d
dε

∣∣∣∣
ε=0

∫
Ωε

F (x) d3x =
∫
∂Ω
F (x)f(x) dS(x) (3.48)

where dS is the surface element associated to ∂Ω.
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1. We will study the function det : Mn(R) → R.

(a) Justify that det : Mn(R) → R,M 7→ detM is differentiable.
(b) Prove that for all M ∈ Mn(R),

det(I + εM) = 1 + εTr(M) + o(ε) (3.49)

Deduce that d
dε det(I + εM)

∣∣
ε=0 = Tr(M).

(c) Let X ∈ GLn(R), H ∈ Mn(R). Prove that

d(det)(X)(H) = Tr(t Com(X)H) (3.50)

2. Set the change of variables x(u) = u + εf(u)n(u), and compute the Jacobian det
(
∂x
∂u

)
at

first order in ε, i.e., up to o(ε).

3. Let F : Rn → R be C1, v : Rn → Rn, and ε ∈ U a neighborhood of 0. By considering a
well-chosen function, prove that for all x ∈ Rn,

F (x+ εv(x)) = F (x) + εv(x) · ∇F (x) + o(ε) (3.51)

4. Deduce the desired result using the Divergence Theorem.

3.7.2 Connection with the Gravitational Potential

1. Show that E[Ω] < 0, and that minimizing the energy is equivalent to maximizing the fol-
lowing quantity:

I[Ω] :=
∫

Ω

∫
Ω

1
|x− x′|

d3x d3x′. (3.52)

2. Suppose Ω = B(0, R) is a ball centered at the origin of radiusR such that Vol(Ω) = 4
3πR

3 =
V . Show that the gravitational potential at the center is given by:

U(0) = −Gρ
∫

Ω

1
|x′|

d3x′. (3.53)

Calculate this integral explicitly.

3.7.3 The Sphere?

1. Prove that
δF = 2

∫
∂Ω

(∫
Ω

1
|x− x′|

d3x′
)
f(x) dS(x) (3.54)

You may use or prove (for the more courageous) that for all Ω ⊂ Rn, for all φ : Ω → Rn,∫
∂(Ω2)

φ(x) dµ(x) = 2
∫

Ω×∂Ω
φ(x) dµ(x) (3.55)

2. We want to minimize F under fixed volume constraint V . To do this, consider the La-
grangian:

L(λ) = F − λV, λ ∈ R. (3.56)

Deduce that the first variation of F writes:

δL =
∫
∂Ω

(
2
∫

Ω

1
|x− x′|

d3x′ − λ

)
f(x) dS(x). (3.57)
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3. Using spherical symmetry, show that if Ω is a ball of radius R, then for all x ∈ ∂Ω, the
quantity ∫

Ω

1
|x− x′|

d3x′ (3.58)

is constant. Deduce that the ball satisfies the stationary condition δL = 0 for all f .

4. (Bonus) Show that the ball is indeed a local minimum for F under volume constraint by
studying the second variation.

5. Conclude and explain why large objects in the Universe are spherical.
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3.8 Relativistic Motion of a Charged Particle (SR, AM, EM,
SM) ⋆⋆⋆⋆⋆

(Solution)

3.8.1 Relativistic Lagrangian of a Charged Particle in an Electromagnetic
Field

1. Show that using the principle of least action and Lorentz invariance, the action of a free
particle of mass m can be written as S = −mc

∫
ds where ds2 = c2dt2 − dx2. Deduce that

the Lagrangian of the system is

L = −mc2

√
1 − v2

c2 , (3.59)

where v = dx/dt.

2. By introducing the electromagnetic four-potential Aµ = (ϕ/c,A), propose an interaction
term Lint corresponding to a particle of charge q in this field. Show that it can be written as

Lint = qA · v − qϕ , (3.60)

and deduce the total Lagrangian Ltot = L + Lint.

3. Starting from the total Lagrangian, calculate the generalized momentum Pi = ∂Ltot/∂v
i.

Show that it can be expressed as
p = γmv + qA , (3.61)

where γ = (1 − v2/c2)−1/2.

4. Write the Euler–Lagrange equations associated with Ltot and show that they lead to the
Lorentz equation in 3 dimensions,

d
dt (γmv) = q

(
E + v × B

)
, (3.62)

with E = −∇ϕ− ∂tA and B = ∇ × A and, ∇(A · v) = (v · ∇)A + v × (∇ × A).

5. Express the Lagrangian by parameterizing with proper time τ and deduce that,

L = −mc
√

−gµν ẋµẋν + qgµνA
µẋν (3.63)

6. Show that
mẍµ = qFµν ẋ

ν (3.64)

Where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor.

7. Explicitly write the components of the tensor Fµν and show that F0i = Ei/c and Fij =
−εijkBk . Interpret the physical meaning of these components.

8. Calculate the two invariants of the electromagnetic field,

I1 = FµνF
µν , I2 = εµνρσFµνFρσ, (3.65)

and express them in terms of E and B. What are the physical cases corresponding to I1 = 0
and I2 = 0?

9. Verify that under a gauge transformation Aµ → Aµ + ∂µΛ, the equations of motion remain
unchanged. What is the associated symmetry?
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3.8.2 Equations of Motion of a Charged Particle in a Plane Electromag-
netic Wave

Consider a particle of mass m and charge q subjected to an electromagnetic field described by the
tensor Fµν . Its motion is governed by the equation:

mẍµ = qFµν ẋν (3.66)

where the dots denote derivatives with respect to the particle’s proper time τ . We use natural units
where c = 1.

A plane electromagnetic wave is modeled by a four-potential of the form:

Aµ(x) = aµf(kνxν) (3.67)

where f is a C1 function, kµ is a lightlike four-vector, hence kµkµ = 0, and aµ is a constant
four-vector representing the polarization.

1. Show that
Fµν(x) = (kµaν − kνaµ) f ′(kρxρ) (3.68)

2. (a) Calculate ∂µAµ for the potential Aµ(x) = aµf(kρxρ).
(b) Deduce that the Lorenz gauge condition ∂µAµ = 0 implies:

aµkµ = 0 (3.69)

3. Now consider the motion of a particle in this electromagnetic wave.

(a) Using the expression for the tensor Fµν found in question 1, show that:

Fµν ẋν = [kµ(aρẋρ) − aµ(kρẋρ)] f ′(kρxρ) (3.70)

(b) Deduce the equation of motion in the form:

mẍµ = q [kµ(aρẋρ) − aµ(kρẋρ)] f ′(kρxρ) (3.71)

4. Now we seek to integrate this equation.

(a) Show that the scalar kρẋρ is constant during the motion.
(b) Deduce that ϕ = kρx

ρ(τ) is an affine function of τ , which can be used as a new param-
eter.

(c) Using the previous relations, integrate the equation of motion and determine the com-
plete expression for the trajectory τ 7→ xµ(τ)5

5This exercise allows us to analytically determine the trajectory of a charged particle in a plane electromagnetic wave.
You can then plot it in Python using the obtained functions.
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3.8.3 Field Theory

We define the action,

S =
∫

Ω
− 1

4µ0
FµνFµν −Aµjµd4x, Ω ⊂ R1,3 (3.72)

We can thus easily define a Lagrangian density.

1. For an action depending on a field φ (scalar, tensor, etc.):

S =
∫

Ω
L(φ, ∂µφ, xµ)d4x (3.73)

Prove that the Euler-Lagrange equations remain valid for a field φ.
To do this, we will postulate the principle of least action, meaning that for an infinitesimal
transformation φ 7→ φ+ εη6, we have,

dS
dε [φ+ εη, ∂µ(φ+ εη), xµ](0) = 0 (3.74)

2. Derive Maxwell’s equations in tensor form,

∂µF
µν = µ0j

ν , ∂λFµν + ∂µFνλ + ∂νFλµ = 0 , (3.75)

where jµ = (cρ, j) is the four-current (four-current density).

3.8.4 Trajectory of a Charged Particle in a Constant Magnetic Field

Consider a particle of mass m and charge q moving relativistically in an electromagnetic field. In
this section, we gradually introduce the effects of a constant magnetic field B = B ez (curved
sector of a synchrotron) and an average braking force due to synchrotron radiation.

A. Synchrotron Radiation Neglected

1. Calculate Fµν .

2. Deduce that the motion is in the Oxy plane. Show that the energy is constant if radiation
losses are neglected.

3. Show that, in the absence of energy loss, for uµ = (γc, 0, u0 = γv, 0)7,

x(t) = R cos
(
ω

γ
t

)
, y(t) = R sin

(
ω

γ
t

)
(3.76)

With (synchrotron law)8:
R = γv

ω
= γmv

qB
(3.77)

6Where η is a C1(Ω) function, and ∀x ∈ ∂Ω, η(x) = 0, i.e., the function vanishes at the boundaries.
7It would also be necessary to show that γ and v are constant and that τ(t) = γt.
8For this, we will need to switch to the laboratory frame.

39



Chapter 3. Exercises 3.8. Relativistic Motion of a Charged Particle

B. Study of the Real Motion

1. Synchrotron radiation leads to an average energy loss. Recall the formula for the average
radiated power (relativistic Larmor) for a centripetal acceleration a = v2/R,

P = − d
dtE = q2

6πε0c3 γ
4a2 (3.78)

Using E = γmc2, show that by expanding, we obtain the differential equation,

d
dtγ = −C (γ2 − 1) (3.79)

Give the expression for the coefficient C in terms of q,B,m, c, ε0.

2. Solve the differential equation for γ9. We give, coth−1 x = 1
2 ln x+1

x−1 .

3. Deduce the new trajectory of the charged particle. Study the limit as t → ∞.

4. Plot the parametric curve x(t), y(t) in Python. What problem does this generate?

3.8.5 Physics of Relativistic Colliders

Here, we will use natural units where the speed of light c = 1.

1. Define the square of the total energy-momentum invariant s = (p1 + p2)2 for the collision
of two particles with four-momenta p1 and p2. Express the total energy available in the
center-of-mass frame (CMS) in terms of s.

2. For a head-on collision of two identical particles of mass m and energy E (each) in the
laboratory frame, show that the CMS energy is

√
s = 2E (assuming E ≫ m).

3. For the case of a collision with a fixed target of mass m, derive the formula

s = m2 +m2 + 2mElab, (3.80)

and deduce the threshold energy for the production of two particles of mass m (extreme
elastic collision).

4. Calculate the energy required in a fixed-target experiment to produce a new particle of mass
M at threshold, and compare it to the energy required in a symmetric collider (ECM =
M + M ). Why are colliders with counter-propagating beams more efficient for reaching
high energies?

9It is indeed much simpler to solve the equation for γ than for v, since here v depends on time.
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3.9 Relativistic Hydrodynamics and Heavy-Ion Collisions
(SR,SM) ⋆⋆⋆⋆⋆

(Solution)

We work in natural units with c = 1.

3.9.1 Classical Hydrodynamics

1. Write the mass conservation (continuity) equation for a classical fluid, namely
∂ρ

∂t
+ ∇ · (ρv) = 0. (3.81)

Show that in the case of an incompressible fluid (ρ = constant), this reduces to ∇ · v = 0.

2. Write Euler’s equation for a perfect (non-viscous) fluid under the influence of a gravitational
field g:

ρ
(∂v
∂t

+ (v · ∇)v
)

= −∇p+ ρg. (3.82)

Briefly describe the physical meaning of each term in this equation.

3. Show how the inclusion of viscous effects leads to the Navier–Stokes equation:

ρ
(∂v
∂t

+ (v · ∇)v
)

= −∇p+ η∇2v +
(
ζ + η

3

)
∇(∇ · v) + ρg, (3.83)

where η is the shear (dynamic) viscosity and ζ is the bulk viscosity. Explain the role of these
terms.

4. Explain the difference between the Lagrangian description (tracking fluid particle trajecto-
ries) and the Eulerian description (observing the velocity field at a fixed point in space). In
particular, show that the total derivative for a fluid is d

dt = ∂
∂t + v · ∇ in the Eulerian for-

malism.

5. Define streamlines in a fluid, and show that these curves are tangent to the velocity vector
field v at each point. Interpret these lines physically.

6. Derive Bernoulli’s theorem for a stationary, incompressible, and non-viscous fluid. Show
that along a streamline,

1
2ρv

2 + p+ ρΦ = constant, (3.84)

where Φ is a potential of forces (e.g. Φ = gz in a constant gravitational field g).

3.9.2 Introduction to Relativistic Hydrodynamics

Relativistic hydrodynamics describes the evolution of continuous systems with high energy density
(such as the quark–gluon plasma) incorporating the principles of special relativity. We consider
here perfect fluids, without viscosity or heat conduction, and their contravariant description.

1. Energy–momentum tensor. The energy and dynamical content of a perfect fluid is en-
coded in the energy–momentum tensor:

Tµν = (ε+ p)uµuν + p gµν , (3.85)

where:
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• ε is the energy density (in the fluid’s rest frame),
• p is the pressure (same unit as ε, i.e. J/m3),
• uµ is the fluid four-velocity,
• ηµν = gµν = diag(−1, 1, 1, 1) is the Minkowski metric.

(a) Verify that Tµν is symmetric.
(b) Compute Tµν in the fluid’s rest frame (uµ = (1, 0, 0, 0)).
(c) Interpret the physical components T 00, T 0i, and T ij .
(d) Calculate the trace Tµµ.
(e) Show that in the ultra-relativistic gas case, p = ε

3 .
Recall from statistical physics,

ε = 1
V

∫ d3∥p∥
(2π)3 E(p) × f(p) (3.86)

p = 1
3V

∫ d3∥p∥
(2π)3

∥p∥2

E(p) × f(p). (3.87)

2. Conservation of energy and momentum. In any isolated system, the energy–momentum
tensor is locally conserved:

∂µT
µν = 0. (3.88)

This tensorial equation (4 scalar equations) expresses the conservation of energy (ν = 0) and
of the three momentum components (ν = 1, 2, 3). It constitutes the fundamental equation
of relativistic hydrodynamics.

(a) What are the dynamical unknowns of the problem?
(b) Why must this system be supplemented by an equation of state relating ε, p, and pos-

sibly T ?

3. Relativistic thermodynamics. In the fluid’s rest frame, we locally define:

T : temperature, s : entropy density, µ : chemical potential, n : particle density.

The first law of thermodynamics, expressed in local densities (i.e. in a volume element dV ),
takes the form:

dε = T ds+ µdn. (3.89)

Using the classical first law,

dU = T dS + µdN − pdV (3.90)

and assuming µ = 0, prove the identity ε+ p = Ts, called Euler’s relation.

4. Relativistic speed of sound. The speed of sound cs is defined by:

c2
s =

(
∂p

∂ε

)
s

. (3.91)

(a) Compute cs for an ultra-relativistic fluid where p = ε/3.
(b) Compare to the speed of light c = 1 and comment.
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3.9.3 Relativistic equation of motion

We consider a perfect fluid in special relativity. The total number of particles is given by

N =
∫

Σ
jµ dΣµ, jµ = nuµ (3.92)

over a future-oriented spacelike hypersurface Σ (for example t = const). We assume that N is
conserved.

1. Show that particle number conservation is locally expressed as

∂µ(nuµ) = 0, (3.93)

where n is the particle density in the comoving frame, and uµ the fluid four-velocity.

2. Using ∂µTµν = 0, deduce the equation of motion (or relativistic Euler equation) of a perfect
fluid without sources and isotropic particle density:

(ε+ p)uµ∂µuν + (uµuν + gµν) ∂µp = 0. (3.94)

3.9.4 Application to heavy-ion collisions

We introduce the Bjorken coordinates: τ =
√
t2 − z2, η = 1

2 ln t+z
t−z .

1. Compute the line element ds2, and deduce gµν .

2. Assuming a boost-invariant fluid along z, we are no longer in flat space. The conservation
equation then reads,

∇µT
µν = ∂µT

µν + ΓµµλT
λν + ΓνµλTµλ = 0 (3.95)

where
Γλµν = 1

2g
λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (3.96)

Show that the conservation equation leads to:

dε
dτ + ε+ p

τ
= 0. (3.97)

3. For p = ε/3, solve the above equation and deduce:

ε(τ) ∝ τ−4/3, T (τ) ∝ τ−1/3. (3.98)

4. During the QGP → hadron transition, the equation of state can be written as:

p = ε− 4B
3 . (3.99)

Show that p = 0 at the transition implies ε = 4B and deduce the critical temperature Tc.

5. By modelling a nucleus as a sphere of radius R, define the geometric cross-section σ ≃
π(2R)2. Relate this quantity to the distinction between central and peripheral collisions.

6. Show that the initial energy density ε0 is larger for a central collision. Assuming ε = aT 4,
estimate the initial temperature T0 reached at RHIC (ε0 ∼ 10 GeV/fm3).
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3.10 Hydrogen Atom and Radial Equation [6] (QM) ⋆⋆⋆

(Solution)

In this problem, we study the hydrogen atom (an electron of mass me in the Coulomb potential
V (r) = −e2/r of a fixed proton) in non-relativistic quantum mechanics. We use spherical coordi-
nates (r, θ, ϕ) and the time-independent Schrödinger equation:

− ℏ2

2me

[ 1
r2 ∂r

(
r2∂r

)
− L2

ℏ2r2

]
ψ(r, θ, ϕ) − e2

r
ψ(r, θ, ϕ) = E ψ(r, θ, ϕ), (3.100)

where L2 is the orbital angular momentum operator.

3.10.1 Separation of Variables and Radial Equation

1. Show that the wavefunction can be separated as ψ(r, θ, ϕ) = R(r)Yℓm(θ, ϕ), where Yℓm is
a spherical harmonic eigenfunction of L2 and Lz , with:

L2Yℓm = ℏ2ℓ(ℓ+ 1)Yℓm, LzYℓm = ℏmYℓm. (3.101)

Deduce that the radial Schrödinger equation for R(r) is:

− ℏ2

2me

[
d2R

dr2 + 2
r

dR
dr − ℓ(ℓ+ 1)

r2 R

]
− e2

r
R = ER. (3.102)

2. Let u(r) = rR(r). Show that the equation becomes:

− ℏ2

2me

d2u

dr2 +
[
ℏ2ℓ(ℓ+ 1)

2mer2 − e2

r

]
u(r) = Eu(r). (3.103)

Define the parameter κ as:

κ =
√

2me|E|
ℏ2 . (3.104)

Show that introducing the dimensionless variable ρ = κr, the equation takes the form:

d2u

dρ2 =
[
ℓ(ℓ+ 1)
ρ2 − ρ0

ρ
+ 1
]
u(ρ), (3.105)

where ρ0 = mee
2

ℏ2κ
.

3. Propose the ansatz:
u(ρ) = ρℓ+1e−ρ/2v(ρ), (3.106)

and show that v(ρ) satisfies the differential equation10:

ρ
d2v

dρ2 + (2ℓ+ 2 − ρ)dv
dρ + (ρ0 − 2ℓ− 2)v = 0. (3.107)

4. Expanding v(ρ) =
∑∞
k=0 ckρ

k , show that the series generally diverges at infinity unless it
terminates at a finite order. Deduce that the termination condition is:

ρ0 = 2n, where n = k̂ + ℓ+ 1 ∈ N∗. (3.108)
10This is a confluent hypergeometric equation.
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5. Derive the expression for the bound energy levels of the hydrogen atom:

κn = mee
2

ℏ2 · 1
2n ⇒ En = −ℏ2κ2

n

2me
= −mee

4

2ℏ2 · 1
n2 . (3.109)

6. What is the degeneracy of each energy level En? Show that it is n2 by considering the
possible values of ℓ (from 0 to n − 1) and m (from −ℓ to +ℓ). Explain why, in this non-
relativistic model, the energy depends only on n and not on ℓ.

3.10.2 Ground State (n = 1) and Radial Properties

7. For the ground state (n = 1, ℓ = 0), show that the normalized radial wavefunction is:

R1,0(r) = 2
a

3/2
0

e−r/a0 . (3.110)

Deduce the full expression for ψ1,0,0(r, θ, ϕ) and verify its normalization
∫

|ψ1,0,0|2d3x = 1
(note that Y 0

0 = 1/
√

4π).

8. Calculate the radial probability density P (r) = 4π|R1,0(r)|2r2 and sketch its qualitative
profile as a function of r. Interpret the physical meaning of this density (most probable
location of the electron).

9. Show that the expectation value of the distance ⟨r⟩ between the electron and the nucleus, as
well as the variance (∆r)2, are given by:

⟨r⟩ = 3
2a0, (∆r)2 = ⟨r2⟩ − ⟨r⟩2 = 3

2a
2
0 −

(3
2a0

)2
. (3.111)

(Hint: Use the integral
∫∞

0 rne−2r/a0dr = n!(a0/2)n+1 and verify the results.)

10. (Optional) Introduce the momentum representation. Compute the Fourier transform ψ̃1,0,0(p)
of the ground state and interpret the associated momentum distribution (square modulus).
What are the expectation values of the momentum ⟨p⟩ and its square ⟨p2⟩?

11. Interpretation: Briefly discuss how the 1/n2 dependence of the energy levelsEn explains the
fine structure of hydrogen spectral lines and the concept of the principal quantum number.
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3.11 Toward a Relativistic Formalism (QM, SR) ⋆⋆⋆⋆⋆

(Solution) Conventions and notations. Natural units c = ℏ = 1. Metric gµν = (−,+,+,+).

Einstein summation convention on repeated indices. ∂µ = ∂

∂xµ
,□ = ∂µ∂

µ, /∂ ≡ γµ∂µ. Hermitian
adjoint †. Dirac adjoint ψ̄ = ψ†γ0. Spatial vectors are in bold. Fine-structure constant α =
e2/(4π). We assume that the student is familiar with the spherical harmonics Yℓm(θ, φ) and the
orbital angular momentum operators L.

3.11.1 From Klein–Gordon to Dirac (algebraic factorization, historical method)

1. Scalar equation.

(a) Start from the relativistic relation E2 = p2 + m2. Apply the quantum prescriptions
E 7→ i∂t, p 7→ −i∇ and show that any complex scalar field ϕ(x) satisfies

(□+m2)ϕ = 0.

(b) After your derivation, explain in 2–4 lines why the fact that the equation is second
order in ∂t makes a simple probabilistic interpretation delicate (sign of the temporal
density of current not guaranteed, necessity to interpret ϕ as a field).

2. Dirac’s idea: factorization.

(a) Dirac seeks a linear operator D (with constant coefficients) such that, for some D′,

DD′ = □+m2.

Justify that one can look for D of the form

D = iAµ∂µ +B,

with Aµ, B independent of x. Argue why Aµ, B cannot be scalars and must act on a
higher-dimensional space (intuitively: anticommutation necessary to obtain ∂µ∂µ).

(b) Impose the compositionDD′ = □+m2 and, by regrouping the terms in second deriva-
tives, first derivatives, and terms without derivatives, show that one obtains the alge-
braic constraints

{Aµ, Aν} = 2gµν I, AµB +BAµ = 0, B2 = m2I,

where {·, ·} denotes the anticommutator and I the identity on the space on whichAµ, B
act.

3. Guided interpretation.

(a) Explain in a few lines the role of anticommutation in recovering the scalar operator □
(i.e. cancellation of the cross terms).

(b) Explain why the appearance of non-commutative objects naturally introduces addi-
tional degrees of freedom (spin, and later particle/antiparticle) — try to formulate phys-
ically what these components represent.
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3.11.2 Construction of Dirac matrices, Clifford algebra and Lagrangian
formalism

1. SetB = mβ,A0 = β,Ai = βαi and define γ0 = β, γi = βαi. Show that the linear equation

(iγµ∂µ −m)ψ = 0

produces (via composition with (iγµ∂µ +m)) the operator (□+m2)I if and only if

{γµ, γν} = 2gµν I.

2. Give a brief definition (in your own words) of the Clifford algebra Cl(1, 3) and compute
σµν = i

2 [γµ, γν ]. Indicate a useful property of σµν (infinitesimal generators of Lorentz
transformations on spinors).

3. Minimal dimension. Argue succinctly why the smallest faithful representation of Cl(1, 3)
over C has dimension 4; consequently ψ is a four-component spinor. If the representation
argument is unknown, give a concrete example (matrices 4 × 4) showing that 2 × 2 matrices
cannot satisfy all relations.

4. Dirac representation. One gives

γ0 =
(
I2 0
0 −I2

)
, γi =

(
0 σi

−σi 0

)
.

(a) Verify the anticommutation relations in this basis.

(b) Write β, αi in 2 × 2 blocks and explain the decomposition ψ =
(
φ

χ

)
; specify which

are the "large" and "small" components for a particle at rest.

5. Dirac Lagrangian. Consider

LD = ψ̄(iγµ∂µ −m)ψ.

(a) Vary LD with respect to ψ̄ and ψ (treated as independent variables) and recover the
Dirac equation and its adjoint.

(b) Show the global invariance ψ 7→ eiαψ and, by Noether’s theorem, compute the con-
served current jµ = ψ̄γµψ.

3.11.3 Plane waves, projectors, Gordon identity and positivity of density

1. Look for solutions ψ(x) = u(p)e−ip·x and ψ(x) = v(p)e+ip·x. Show

(/p−m)u(p) = 0, (/p+m)v(p) = 0.

2. For p = 0, solve explicitly and exhibit the two spin states for E = +m and the two for
E = −m. Interpret these solutions in terms of particle/antiparticle.

3. Define the projectors
Λ±(p) =

±/p+m

2m ,

show Λ2
± = Λ±, Λ+Λ− = 0, and establish the resolutions of the identity∑

s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m,

for the normalization u†
sus′ = 2Eδss′ .
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4. Show the Gordon identity

ū′(p′)γµu(p) = 1
2mū′(p′)

(
(p′ + p)µ + iσµν(p′ − p)ν

)
u(p),

and briefly explain why the term in σµν is associated with the magnetic moment (factor
g = 2 at tree level).

5. In the Dirac representation, show that

j0 = ψ̄γ0ψ = ψ†ψ = ∥φ∥2 + ∥χ∥2 ≥ 0,

and comment why this allows a probabilistic interpretation of ψ (contrary to the scalar case).

3.11.4 Minimal coupling and non-relativistic limit (step-by-step proce-
dure)

1. Promote the global U(1) symmetry to a local symmetry and introduce the covariant deriva-
tive Dµ = ∂µ + iqAµ. Write the Dirac–Maxwell Lagrangian

L = ψ̄(iγµDµ −m)ψ − 1
4FµνF

µν ,

show that the interaction term is written −qψ̄γµψAµ and identify the current jµ = qψ̄γµψ.

2. Non-relativistic limit (constructive procedure).

(a) Write ψ(x, t) = e−imt

(
φ(x, t)
χ(x, t)

)
and insert into the Dirac equation coupled to Aµ =

(V,A). Write explicitly the exact system for φ, χ.
(b) Under the non-relativistic assumption (E ≃ m+ E , E ≪ m) and ∥χ∥ ≪ ∥φ∥, isolate

χ to order 1/m (show the iteration) and reinject into the equation for φ.
(c) Expand up to order 1/m2 to obtain the Pauli effective Hamiltonian

Heff = (p − qA)2

2m + qV − q

2mσ · B +HDarwin +HSO + O(1/m3),

and show explicitly (step by step) where the Darwin and spin-orbit terms come from.
(d) Physically interpret each term (magnetic moment g = 2, zitterbewegung⇝ Darwin,

relativistic kinetic correction).

3.11.5 Angular operators and construction of spherical spinors Ωκm — ex-
plicit vectorial notations

Notation conventions (emphasized). We will systematically denote operator vectors by a bold
letter with an arrow: L⃗, S⃗, J⃗, Σ⃗. The arrow reminds that we are dealing with the three real
components acting on R3. The Hilbert space is

H = L2(R3) ⊗ C4,

i.e. spatial functions of r valued in C4 (Dirac spinors). The operators are distributed as follows:

• L⃗ acts on the L2(R3) part (angular dependence);
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• Σ⃗ acts on the C4 part (spinorial component index);

• S⃗ = 1
2 Σ⃗ is the effective spin operator.

1. Orbital angular momentum L⃗.

(a) Definition (differential operator on the spatial part)

L⃗ = r⃗ × p⃗, p⃗ = −i∇.

(b) Fundamental relations:

[Li,Lj ] = i εijkLk, [L⃗2,Li] = 0.

(These relations are the same as those used for the spherical harmonics Yℓm.)

2. Spin and operator Σ⃗.

(a) Matrix definition (operator acting on C4):

Σ⃗ =
(

σ⃗ 0
0 σ⃗

)
, i.e. Σi =

(
σi 0
0 σi

)
,

where σ⃗ = (σ1, σ2, σ3) are the Pauli 2 × 2 matrices.
(b) The spin operator is

S⃗ ≡ 1
2 Σ⃗ (acts on C4).

(c) Algebraic properties:

[Si,Sj ] = i εijkSk, S⃗2 = 3
4 I4.

(d) Space remark: Σ⃗ does not act on the variable r (it does not differentiate), it acts only on
the spinorial component index. Thus S⃗ and L⃗ operate on distinct factors of H.

3. Total angular momentum J⃗.
J⃗ = L⃗ + S⃗.

We have
J⃗2 = L⃗2 + S⃗2 + 2 L⃗ · S⃗,

and for a central HamiltonianH = H(r) (potential depending only on r), J⃗2 commutes with
H . The eigenvalues of J⃗2 are j(j + 1) with j = ℓ± 1

2 .

4. Auxiliary operator K̂ and its usefulness.

K̂ ≡ β
(
Σ⃗ · L⃗ + 1

)
.

• K̂ is Hermitian and commutes with the Dirac Hamiltonian in a central potential (rea-
son: K̂ is built from angular operators and β, and the commutators with α · p⃗ and V (r)
vanish — see detailed proof in the correction).

• The eigenvalues are denoted κ = ±
(
j + 1

2
)
. κ is therefore a good quantum number to

classify states.

5. Construction of spherical spinors Ωκm(θ, φ).
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(a) Logic: as for the construction of Yℓm (eigenfunctions of L⃗2 and Lz), we construct an-
gular functions that are eigenfunctions of J⃗2, Jz by coupling ℓ⊗ s (here s = 1

2 ).
(b) Constructive formula (coupling via Clebsch–Gordan coefficients):

Ωκm(θ, φ) =
∑
mℓ,ms

⟨ℓmℓ; 1
2ms | jm⟩Yℓmℓ

(θ, φ)χms
,

where χ+ 1
2

=
(

1
0

)
, χ− 1

2
=
(

0
1

)
are the eigenvectors of spin 1/2 (acting in C2). In

practice, Ωκm is a two-component spinor (we then place these two components in the
upper or lower block of a four-component Dirac spinor, depending on the convention).

(c) Correspondence rule (ℓ, j) ↔ κ (standard convention):κ = −(ℓ+ 1) if j = ℓ+ 1
2 ,

κ = +ℓ if j = ℓ− 1
2 .

This rule allows one to associate a unique κ to each pair (ℓ, j).
(d) Useful properties:

(orthonormality)
∫

Ω†
κm(θ, φ) Ωκ′m′(θ, φ) dΩ = δκκ′δmm′ ,

(radial action) (σ⃗ · r̂) Ωκm(θ, φ) = − Ω−κm(θ, φ).

The second identity is fundamental: it explains why, in the radial separation, the an-
gular component of the large component (associated with κ) is linked to the angular
component of the small component (associated with −κ).

6. Radial separation — why the 1/r factor.

ψE,κ,m(r) = 1
r

(
FEκ(r) Ωκm(θ, φ)

iGEκ(r) Ω−κm(θ, φ)

)
.

• The factor 1/r is chosen for the same reason as in the Schrödinger problem: it simpli-
fies the radial operator (avoids the appearance of terms in 2/r coming from the radial
derivative) and makes it possible to obtain a radial system for F,G without additional
coupling terms complicating the power series.

• The factor i in front of G is a convention that makes the radial equations real in most
representations.

7. Short exercises (to practice).

(a) Construct explicitly Ωκm for κ = 1 (state s1/2, ℓ = 0) and check orthonormality.
(b) Write the combination for κ = −1 (p1/2, ℓ = 1, j = 1/2) using simple Clebsch–Gordan

coefficients and verify the property (σ⃗ · r̂)Ωκm = −Ω−κm.
(c) Verify that K̂Ωκm = κΩκm (show the main steps).

Final remark. This explicit formulation — operators in bold ·⃗ with arrows, spin matrices Σ⃗ on
C4, and radial separation with the 1/r factor — makes the construction of spherical spinors Ωκm
and their role in the separation of the Dirac equation completely natural and traceable, exactly as
it is done for L⃗ and the spherical harmonics Yℓm.
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3.11.6 Relativistic hydrogen: radial separation and derivation of levels
without specialized theory of special functions

Approach note (for L3). It is possible to avoid a deep theoretical development of hypergeometric
functions by proceeding via a power-series method strictly analogous to that used for nonrelativistic
hydrogen: we propose a factorization of singularities (at zero and at infinity), we write a power
series for the remaining part, we obtain a recurrence relation for the coefficients, and we impose
termination of the series to guarantee normalizability. This method is constructive and suitable for
an L3 course: it requires algebraic manipulations but not prior knowledge of Kummer/Whittaker
functions. The questions below guide this elementary calculation.

1. Stationary equation and angular separation.

(a) Write the stationary equation in the Coulomb potential V (r) = −Zα

r
:(

α · p + βm+ V (r)
)
ψ(r) = Eψ(r).

(b) We use the spherical spinors Ωκm(θ, φ).

ψE,κ,m(r) = 1
r

(
FEκ(r) Ωκm(θ, φ)

iGEκ(r) Ω−κm(θ, φ)

)
,

and justify the form (factor 1/r, choice of indices κ,±κ).

2. Radial system. By projecting onto the angular components (guided steps), show thatF (r), G(r)
satisfy 

dF
dr + κ

r
F =

(
m+ E − V (r)

)
G,

dG
dr − κ

r
G =

(
m− E + V (r)

)
F.

3. Decoupling and second-order equation (algebraic).

(a) Isolate G from the first equation:

G = 1
m+ E − V

(dF
dr + κ

r
F
)
,

then differentiate this expression and substitute into the second equation to obtain a
second-order equation for F . Carry out the algebraic simplifications step by step (take
care with signs and factors).

(b) For V (r) = −Zα/r, reorganize the equation by highlighting the singularities at r = 0
(terms in 1/r2, 1/r) and the constant term at infinity.

4. Change of variables and factorization. For bound states (|E| < m) define

λ ≡
√
m2 − E2 (> 0), ρ ≡ 2λr.

Show that, after the change of variable, the equation for F (ρ) admits the asymptotic factor-
ization

F (ρ) = ργe−ρ/2 f(ρ),

where γ > 0 is the exponent governing the behavior near ρ = 0 and e−ρ/2 ensures expo-
nential decay at infinity.
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(a) Determine γ by solving the indicial equation in the neighborhood ρ → 0 and show

γ =
√
κ2 − (Zα)2.

(b) Note and discuss the necessary physical condition κ2 > (Zα)2 for γ to be real (remark
on the “supercritical” region if Zα approaches 1).

5. Series method (termination and quantization).

(a) Write f(ρ) =
∞∑
n=0

anρ
n. By inserting into the equation obtained for f , deduce the

recurrence relation linking an+1 and an. Write explicitly the general form of the re-
currence (show the steps).

(b) Analyze the behavior of the series as ρ → ∞. Argue (taking inspiration from the
nonrelativistic example) that the series will diverge exponentially unless it terminates
(i.e. there exists nr such that anr+1 = 0 and an = 0 for n > nr). This termination
condition is the quantization condition.

(c) Show that the termination condition rewrites, after algebraic simplification, in the sim-
ple form

nr + γ = ZαE

λ
,

with nr ∈ N (radial quantum number).

6. Algebraic solution for the energies.

(a) Set N ≡ nr + γ > 0 and rewrite the previous relation as

λ = ZαE

N
.

Square and use λ2 = m2 − E2 to obtain an algebraic relation in E2. Show that one
arrives at

E2
(

1 + (Zα)2

N2

)
= m2.

(b) Deduce the closed expression of the bound levels

Enr,κ = m

[
1 + (Zα)2(

nr +
√
κ2 − (Zα)2

)2

]−1/2

.

7. Relate to usual notations and fine structure.

(a) Define the principal quantum number n ≡ nr + |κ|. Show that for κ = ±(j + 1
2 ) this

definition gives n ∈ N∗ and justifies the usual numbering of levels.
(b) By rearranging one obtains the classical form

En,j = m

[
1 + (Zα)2(

n− δj
)2

]−1/2

, δj ≡ j + 1
2 −

√(
j + 1

2

)2
− (Zα)2.

Briefly present (2–4 lines) how the degeneracy in ℓ of the nonrelativistic theory is par-
tially lifted (dependence on j only).

52



Chapter 3. Exercises 3.11. Toward a Relativistic Formalism △

(c) Expand En,j for Zα ≪ 1 up to order (Zα)4 and show that

En,j ≃ m− m(Zα)2

2n2 − m(Zα)4

2n4

( n

j + 1
2

− 3
4

)
+ O((Zα)6).

(d) (Numerical exercise) For Z = 1 and n = 1, j = 1
2 , estimate the fine-structure correc-

tion in eV (approximate value). Hint: mc2 ≃ 511 keV, α ≃ 1/137.
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3.12 Pöschl–Teller Potential V (x) = − V0

cosh2(αx)
(QM)⋆⋆⋆

(Solution)

We consider a quantum particle subject to an attractive potential of the form

V (x) = − V0

cosh2(αx)
, (3.112)

called the Pöschl–Teller potential, where α > 0. This potential admits a finite number of bound
states and allows for an exact solution of the Schrödinger equation.
The Hamiltonian of the system is given by

H = P2

2m + V (X) = P2

2m − V0

cosh2(αX)
(3.113)

1. Write the time-independent Schrödinger equation for a wave function ψ(x):

− ℏ2

2mψ′′(x) − V0

cosh2(αx)
ψ(x) = E ψ(x). (3.114)

2. Show that the substitution u = tanh(αx) yields:

ψ′(x) = α (1 − u2) dϕ
du , ψ′′(x) = α2

(
(1 − u2)d2ϕ

du2 − 2udϕ
du

)
(1 − u2) (3.115)

with ϕ(u) = ψ(x(u)).

3. Deduce that the equation in u ∈] − 1, 1[ becomes

(1 − u2) d2ϕ

du2 − 2u dϕ
du +

[
λ(λ+ 1) − µ2

1 − u2

]
ϕ = 0, (3.116)

and express λ, µ in terms of V0, α,m, ℏ, E.

4. Identify λ, µ. We seek a solution of the form ϕ(u) = (1 − u2)
µ
2 P (u) = Q(u)P (u).

Hint: Express Q′(u) in terms of Q(u) to simplify the calculations.
Show that P :] − 1, 1[→ R satisfies the differential equation

(1 − u2)P ′′ − 2(µ+ 1)uP ′ + [λ(λ+ 1) − µ(µ+ 1)]P = 0 (3.117)

5. By examining the behavior of the solution at the endpoints u → ±1, we aim to show that
P (u) must be a polynomial for ϕ ∈ L2([−1, 1]). We will proceed by contradiction, assuming
P is not a polynomial.

(a) Show that the normalization condition reads∫ 1

−1

|ϕ(u)|2

1 − u2 < ∞ (3.118)

(b) P is analytic on ] − 1, 1[. Write P (u) =
∑∞
p=0 apu

p. Derive a recurrence relation
between ap+2 and ap and show that

ap+2 ∼
∞
ap (3.119)
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(c) Conclude using the Riemann criterion for integrals11.

6. It follows that n = degP ∈ N. We therefore write

P (u) =
n∑
p=0

apu
p (3.120)

Use the recurrence relation between ap+2 and ap to show that µ = λ− n12.

7. Deduce the quantized energy levels En as

En = −ℏ2α2

2m (λ− n)2, n = 0, 1, . . . , ⌊λ⌋, (3.121)

where λ(λ+ 1) = 2mV0
ℏ2α2 .

8. Show that the number of bound states is finite: N = ⌊λ⌋ + 1.

9. Provide a physical explanation for why the number of bound states is finite, despite the
"bottomless" shape of the potential. Discuss the connection with the asymptotic decay of the
potential.

11For full mathematical rigor, one should also invoke the theorem on equivalence of divergent series.
12We consider only bound states, hence µ > 0.
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3.13 Larmor Power and Electrodynamic Instability of the Clas-
sical Atom [5] (EM) ⋆⋆

(Solution) A confined (and thus accelerated) charge emits electromagnetic radiation. We now ex-
amine in more detail some consequences of classical Electromagnetic laws combined with those of
dynamics (hence: Electrodynamics), and in particular, show that the classical atom is fundamentally
unstable: the electron localized in the atom emits radiation and, as a result, gradually loses energy.

The description below relies on the assumption that the radiation effect is a minor phenomenon,
although it ultimately leads to dramatic conclusions. We will therefore start with an ordinary
dynamical description, to which we will add the perturbative effects of the source’s (the confined
electron’s) radiation on its own motion.

3.13.1 Calculation of the radiation reaction force Frad.

The Larmor power is the power lost by an accelerated charge. We will deduce a radiation reaction
force Frad from it, which leads to dramatic consequences.

P = µ0q
2a2

6πc = 2q2a2

3c3 (3.122)

1. Write the work dEat = dW , equal to the change in atomic energy over a time dt due to the
radiation force Frad.

2. Write the energy variation of the atom over a time dt due to the radiated power of the
electron.

3. By integrating by parts and assuming periodic motion, show that13,

Frad = 2ϑ2

3c3 v̈ (3.123)

4. Apply Newton’s second law with the previously calculated Frad
14 and a restoring force F =

−mω2
0r. Seeking a solution of the form r(t) = Re

{
r0e

iωt
}

, and letting

ω = ω0(1 + α(ω0τ) + o(ω0τ)), α ∈ R (3.124)

show that the solution is a damped oscillator.
N.B. Given τ = 2e2

3mc3 ≃ 6.4 × 10−24 s, ω0 = 3 × 1015 rad.s−1. Comment.

3.13.2 Conceptual issues raised by the radiation reaction force Frad.

The radiation reaction force Frad written above is conceptually pathological, as the following analy-
sis shows. Using the notations of Section 1.5, Volume I, the Abraham-Lorentz equation for a particle
of charge e and mass m subjected to a force F (with v = ṙ) is:

mr̈ = mτ
...r + F, (3.125)

13Where ϑ2 = e2

4πε014Note the appearance of a force depending on the derivative of the acceleration. We will study in the next part the issues
caused by this force.
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where τ = 2e2

3mc3 ≃ 6.4 × 10−24 s is a characteristic time. One oddity of this equation is the
appearance of a third derivative of the particle’s position (defined by the radius vector r), which is
meant to represent the radiation damping effect.

Moreover, the perturbation of motion caused by this effect is fundamentally *singular*, in the sense
that it alters the order of the motion equation, which changes from second to third order as soon as
the charge is nonzero. In fact, it is precisely because the small parameter τ multiplies the highest
derivative that the perturbation is called *singular*, by definition15.

With these warnings in mind, we now examine the consequences of equation (3.125) as it stands,
to highlight the deep conceptual issues it poses.

1. Using the standard method for solving a differential equation like (3.125), write the general
expression for the acceleration r̈(t), assuming the acceleration at some instant t0, r̈(t0), is
known.

2. Examine the particular case F = 0, and show that the solution is physically aberrant.

3. Returning to the general solution obtained in 1 for F ̸= 0, show that the divergent solutions
can formally be eliminated by a suitable choice of t0. Comment on this choice — which, from
a technical standpoint, expresses a boundary condition rather than an initial condition.

4. Deduce the regularized expression of the solution obtained in 1. Stepping back, analyze the
integral kernel in this expression and verify that, in the limit of zero charge, the motion
equation reduces to the standard dynamical equation.

5. To clearly exhibit the violation of a major physical principle, make a simple change of inte-
gration variable to obtain:

v̇(t) = 1
m

∫ +∞

0
e−s × F(t+ τs) ds. (3.126)

Comment on this equation and show that it violates a physical principle.

6. To highlight this violation even more spectacularly, treat the case of a particle with zero
velocity at t = −∞ and subjected to a step force:

F(t) =
{

0 if t < 0,
F0 if t > 0.

(3.127)

Summarize these results by plotting the time evolution of the acceleration and velocity. Note
that the particle starts moving... before the force is applied!

15The same phenomenon occurs in the Schrödinger eigenvalue equation, where it is Planck’s constant that multiplies
the highest derivative. A specific perturbation technique is used for such problems, known as the WKB (or BKW) method
in the quantum context.
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3.14 Geodesics in a Dispersive Optical Medium (WO, AM, EM,
TH)
⋆⋆⋆⋆⋆

(Correction)
The goal of this exercise is to understand how light propagates in media from the variational prin-
ciple, taking into account dispersion (dependence of the refractive index on the wavelength λ).
This will then allow us to explain various common optical phenomena.

3.14.1 Fermat’s Principle and Optical Metric

1. Derive Fermat’s principle from the principle of least action. This principle can be interpreted
as a geodesic for an effective metric given by:

ds2 = n(r, λ)2δijdxidxj , (3.128)

which is a metric conformal to the Euclidean one: gij(r, λ) = n(r, λ)2δij in Einstein nota-
tion.

2. Justify why this metric is suitable for light propagation in an inhomogeneous and dispersive
medium.

3. Show that the optical trajectories are the geodesics of this metric.

3.14.2 Calculation of a Refractive Index n(r, λ)

In any medium, the refractive index depends microscopically on the density through the electric
susceptibility. Here, we want to justify, from a realistic electromagnetic model16, that the index can
be expressed in the form, with ζ = ω

ω0
:

n(r, ζ) =
ζ→0

1 + 1
2
N(r)e2

mω2
0ε0

(
1 + ζ2)+ o(ζ2) . (3.129)

1. Recall that in an isotropic linear medium with negligible magnetic field, the refractive index
satisfies n2 = εr = 1 + χ.

2. From the Lorentz model for a bound electron subjected to an electric field, with a single
resonance ω0, express the susceptibility χ(r, ω) as a function of the local density N(r). In
particular, show that for negligible damping γ,

n2(r, ζ) = 1 + N(r)e2

mω2
0ε0

1
1 − ζ2 . (3.130)

3. Assuming ω ≪ ω0, deduce the Taylor expansion of equation (3.129).

This model will then allow the introduction of an optical metric to study the geodesics of light in
the drop.

16The validity of the expansion depends on the medium considered. In the case of a gas or a liquid, it is usually sufficient
to consider a single main resonance located in the ultraviolet. This allows a very precise approximation: the error on the
index is typically less than 0.01 % in air, and about 0.1 % in water, within the visible range.
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3.14.3 Calculation of N(r) for a Gas and a Liquid

We seek to calculate N(r) for air and water, treating each case independently. Recall that,

N(r) = ρ(r)
M

NA, (3.131)

where ρ is the mass density, M the molar mass, and NA Avogadro’s number.

1. Assume air is a diatomic ideal gas. It is subject to the gravitational field g = −gez . We
suppose hydrostatic equilibrium and that δQ = 0, i.e., the atmosphere is adiabatic.

(a) Using the first law of thermodynamics, prove that

dT
dz = − g

Cp
, (3.132)

and deduce T (z).
(b) Determine a differential equation for p and prove that

p(z) = p0

(
T (z)
T0

) gM
RΓ

, Γ = g

Cp
, (3.133)

(c) Deduce N(r) = N(z) in this case.

2. In the case of a liquid, one can generally assume ρ(r) is constant. Deduce N(r).

3.14.4 Optical geodesics in a spherical medium

We consider an isotropic medium whose refractive index n depends only on the radial position
r = ∥r∥ and the reduced frequency ζ = ω/ω0, via the function n(r, ζ). This framework models,
for example, spherically symmetric electron density profilesN(r), relevant for idealized planetary
atmospheres.

In this context, light propagation is described by an optical metric, defining an infinitesimal scalar
product between two vectors dxi = (dx1,dx2,dx3):

ds2 = gij dxidxj , (3.134)

where gij is the spherical optical metric. The light trajectory is parametrized by an affine parameter
s, with functions r(s), θ(s), φ(s).

The associated Lagrangian reads:

L = n2(r, ζ)
(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2) , (3.135)

where ˙= d
ds .

We restrict the study to the equatorial plane θ = π
2 , simplifying the Lagrangian to:

L = n2(r, ζ)
(
ṙ2 + r2φ̇2) , (3.136)

with θ̇ = 0.

We use for the refractive index the electromagnetic dispersion law ??.
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1. Radial dependence of the index

(a) Justify that, for a fixed frequency ζ , the radial dependence of n2 is entirely governed
by the profile N(r). Verify that the index is real as long as ζ < 1.

(b) Calculate the radial derivative ∂rn2(r, ζ), and express it in the form:

∂rn
2(r, ζ) = C(ζ) ·N ′(r), (3.137)

with C(ζ) an explicit constant.
(c) Discuss the sign of ∂rn2 if N(r) is a decreasing function (e.g. N(r) = N0

1+λr2 ).

2. Christoffel symbols

In the equatorial plane θ = π/2, the optical metric takes the diagonal form:

gij = n2(r, ζ) · diag(1, r2). (3.138)

Recall the formula for the Christoffel symbols:

Γkij = 1
2g

kℓ (∂igjℓ + ∂jgiℓ − ∂ℓgij) . (3.139)

(a) Deduce the explicit expressions for Γrrr,Γrφφ,Γφrφ in terms of n(r, ζ), n′(r), and r, with
n′(r) = ∂n

∂r .
(b) Show that:

Γrrr = ∂rn
2

2n2 , Γrφφ = −rn2 + r2∂rn
2

2 , Γφrφ = 1
r

+ ∂rn
2

2n2 . (3.140)

3. Geodesic equations

Recall the geodesic equation in a Levi-Civita connection space:

d2xµ

ds2 + Γµνλ
dxν

ds
dxλ

ds = 0. (3.141)

(a) Write explicitly the geodesic equations in the equatorial plane for r(s) and φ(s), using
the Christoffel symbols obtained above.

(b) Discuss qualitatively the effect of the gradient ∂rn2 on the curvature of the trajectory
(is light bent towards higher or lower index zones?).

4. Lagrangian formalism

Consider the optical Lagrangian:

L = n2(r, ζ)
(
ṙ2 + r2φ̇2) . (3.142)

(a) Write the Euler–Lagrange equations for the two generalized coordinates r and φ.
(b) Show that the Euler–Lagrange equation forφ leads to a conservation law (conservation

of the effective angular momentum).

5. Consistency check

Verify that the equations obtained from the Lagrangian formalism coincide with those de-
rived from geometry (Christoffel symbols).

6. Conservation and symmetries
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(a) Show that the rotational symmetry in φ implies the conservation of optical angular
momentum:

ℓ = n2(r, ζ) · r2φ̇ = constant. (3.143)

(b) Deduce a new expression for the Lagrangian in the form:

L = n2(r, ζ)ṙ2 + ℓ2

n2(r, ζ)r2 . (3.144)

7. Parameterization by angle φ

(a) Propose a change of parameter to describe the trajectory as r = r(φ) and show how to
express ṙ = dr

ds in terms of dr
dφ .

(b) Using the conservation of effective angular momentum ℓ = n2(r, ζ)r2φ̇, show that:(
dr
dφ

)2
=
(
n2(r, ζ)r2

ℓ

)2( L
n2(r, ζ) − ℓ2

n4(r, ζ)r2

)
. (3.145)

(c) Demonstrate that the Lagrangian L is conserved along the trajectory, i.e. dL
ds = 0.

(d) Physically interpret the conservation of L in the context of light propagation in a
variable-index medium.

(e) Deduce an explicit differential equation for r(φ) in a given medium n(r, ζ), and briefly
discuss analytical or numerical solutions.

8. Local Snell’s law

Using the conservation of effective angular momentum, show that an analogue of Snell’s law
holds locally:

n(r, ζ) · r sinα = constant, (3.146)

where α is the angle between the trajectory tangent and the radial direction.

9. Numerical method

(a) Propose a numerical scheme to integrate the differential equation for r(φ), with initial
conditions r(0) = r0, dr

dφ (0) = v0.
(b) Discuss the impact of the reduced frequency ζ on the trajectory (angular dispersion).

3.14.5 First application: the rainbow as a geometric manifestation of dis-
persion

We model a water droplet as a homogeneous sphere of radiusR and refractive indexn(ω) computed
in section 3.14.2, immersed in air with index ≃ 1 (see Fig. 3.417).

1. Refractive index of water.

Recall the expression of n(r, ω) = n(ω) for a liquid.

2. Geometric modelling of a primary rainbow.
17Source.
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Figure 3.4: Geometric diagram of the incidence, refraction, and deviation angles for a light ray
crossing a spherical water droplet, introducing the total deviation angle Θ − π = D.

(a) Consider an incident ray from the Sun, entering the droplet with incidence angle α,
refracted according to Snell’s law, reflected once inside, then refracted again upon exit.
Justify that the ray remains straight inside the droplet (constant index), and that deflec-
tions occur only at spherical surfaces.

(b) Let Θ(ω, α) be the total deviation angle. Show that:

Θ(ω, α) = 2α− 4 arcsin
(

sinα
n(ω)

)
+ π. (3.147)

(c) Show that Θ(ω, α) has a minimum for some critical angle αc(ω). Prove that:

αc(ω) = arcsin
(√

4 − n2(ω)
3

)
. (3.148)

Deduce that rays concentrate around a particular exit angle Θmin(ω), resulting in a
maximum observed light intensity in this direction (see Fig. 3.5).

(d) Numerical application. For n ≃ 1.33, calculate the angle Dmin.
(e) Study the function Θmin(ω) and explain the rainbow phenomenon.

Figure 3.5: Formation of the rainbow and the angle Θmin(ω) (Wikipedia).
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3.14.6 Second application: colours of soap bubbles (thin film interfer-
ence) [1]

Here we study the iridescent colours seen on soap bubbles, explained by interference between
waves reflected within a very thin liquid layer modelled as a thin film.

Figure 3.6: Thin film model of a soap bubble.

The bubble is represented by a liquid layer of index n ≃ 4
3 and thickness e, enclosed between

two air/liquid/air interfaces (see Fig. 3.6)18. The air index is taken as 1. The incident light is
monochromatic of wavelength λ and nearly normal incidence19.

1. Multiple reflections and interference.

(a) Explain why light reflected by the bubble decomposes into an infinite sum of waves
successively reflected and transmitted at the two interfaces.

(b) Show that the phase difference between two consecutive reflected waves is:

φ = 4πne
λ

. (3.149)

2. Fresnel coefficients and reflected amplitude.

Let r = 1−n
1+n and t = 2

1+n be the reflection and transmission coefficients at the air-soap
interface (normal incidence).

(a) Calculate numerically r and t for n = 4
3 .

(b) Write the total reflected amplitude ψr as the sum of the geometric series of multiple
waves, clearly showing each reflection and transmission contribution. Show that:

ψr = ψ0

[
r + t2reiφ

1 − r2ei2φ

]
. (3.150)

3. Reflected intensity and interference conditions.

(a) Deduce the expression of the reflected intensity Ir = |ψr|2

2 .
18In the diagram, i is given but we can take i = 0.
19This problem illustrates how thin film interference, modulated by microscopic variations of thickness and refractive

index, can generate spectacular visual effects similar to rainbows.
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(b) Show that this intensity exhibits maxima and minima as a function of φ, and determine
the conditions on λ for destructive and constructive interference.

4. Numerical application: thickness e = 0.3 µm.

(a) Determine the values of λ in the interval [0.4, 0.8] µm for which reflection is minimal.
(b) What is the dominant colour perceived by the human eye in this case?
(c) Qualitatively study what happens when e = 0.03 µm and when e = 30 µm. Interpret

the optical consequences of these two situations.

5. Extension: position- and frequency-dependent index, and white light illumination.

We now consider that the optical index in the bubble depends both on the radial position
R ∈ [0, e] (thickness direction) and the frequency ω via the reduced variable ζ = ω

ω0
, with

ω0 a characteristic frequency.
The local oscillator density varies radially as:

N(R) = N0
(
1 − µR2) , (3.151)

with µ > 0 a spatial variation parameter.

(a) Recall the expanded form of the index for ζ → 0 (eq. 3.129) and explain how the radial
variation N(R) locally affects the optical index.

(b) Taking into account the index variation along R, show that:

φ(ω) = 2ω
c

∫ e

0
n

(
R,

ω

ω0

)
dR. (3.152)

(c) Explain why illumination with white light (broad ω spectrum) can generate complex
colourful patterns (rainbow-like) on the bubble surface.

(d) For N(R) = N0(1 − µR2), compute explicitly the integral contribution to the phase
shift φ(ω).

(e) Show that the extremisation condition dI
dφ = 0 implies:

aω3 − bω + pπ = 0, p ∈ Z, (3.153)

where a, b are expressed in terms of c, e,N0,m, ω0, ε0.
(f) Assuming a > b20, study:

fp(ω) = aω3 − bω + pπ, p ∈ Z. (3.154)

Deduce that there exists a unique ωp ∈ R satisfying fp(ωp) = 0.
(g) Study the sequence (ωp).
(h) Summarise what has been achieved here.

3.14.7 Third application: mirages [2]

Fermat’s principle states that light travels between two points along a path that minimises travel
time. The air’s refractive index near the ground depends only on altitude, n(z). We consider a light
ray starting from height h, with an initial downward angle θ. Points in the xOz plane are labelled
by their Cartesian coordinates (x, z) (see Fig. 3.7).

20This is indeed the case; a quick numerical evaluation confirms it.
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Figure 3.7: Diagram of a mirage (Wikipedia).

1. Show that the time taken for light to go from (0, h) to (xf , zf ) along a path z(x) is:

T = 1
c

∫ xf

0
n(z(x))

√
1 +

(
z′(x)

)2 dx (3.155)

where z′(x) is the derivative of z with respect to x.

2. Since T is minimal, deduce from Beltrami’s identity that the light path satisfies:

n(z(x))2 = A
(
1 + (z′(x))2), (3.156)

where A is a constant.

3. Suppose the ground is hot and the air above is cooler, so that the refractive index increases
with z. We model:

n(z)2 = n2
0 + αz. (3.157)

Show that:
A = n(h)2

1 + tan2 θ
. (3.158)

4. Show that the light path
z(x) = h+ x tan θ + α

4Ax
2 (3.159)

is a solution to the problem (simply substitute to check).

5. Suppose an observer’s eye is at point (L,H). Show that in general there exist two initial
angles θ1 and θ2 allowing rays from (0, h) to reach the observer.

6. Explain the mirage effect.

3.14.8 Fourth application: optical geodesics at sunset – linear model

Recall that in the previous section, we showed that the electron density follows:

N(z) = N0

(
T (z)
T0

)k
, where T (z) = T0 − Γz. (3.160)
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Figure 3.8: Schematic representation of light ray bending at sunset (Wikipedia).

1. Show that for z near zero, the Taylor expansion yields:

N(z) = N0

(
1 − kΓ

T0
z

)
+ o(z). (3.161)

Conclude that N(z) is approximately exponential, with characteristic height:

h := T0

kΓ . (3.162)

2. Deduce the approximate expression for the refractive index near the ground, showing its
frequency dependence ω as:

n(z, ω) ≃ n0(ω) − α(ω)z, (3.163)

with
n0(ω) := 1 +K(ω), α(ω) := kΓ

T0
K(ω). (3.164)

3. Using Fermat’s principle, write the Lagrangian for the light ray path z(x):

L(z, z′) = n(z, ω)
√

1 + (z′)2. (3.165)

Show that since L does not explicitly depend on x, Beltrami’s identity gives:

n(z, ω)2 = A(ω)
(
1 + (z′)2) , (3.166)

with constant A(ω) > 0.

4. Using the linear expression of n(z, ω), write the differential equation for the trajectory:

(z′)2 = (n0(ω) − α(ω)z)2

A(ω) − 1. (3.167)

Show that the solution can be written explicitly as:

z(x) = h+ x tan θ + α(ω)
4A(ω)x

2, (3.168)

66



Chapter 3. Exercises 3.14. Geodesics in an Optical Medium △

with
A(ω) = n0(ω)2

1 + tan2 θ
. (3.169)

5. Qualitatively study the influence of frequency ω on the trajectory z(x, ω). Explain why:

• Blue rays (high ω) are more curved than red ones.
• The Sun remains visible even when it is geometrically below the horizon.
• The Sun appears red at sunset.

3.14.9 Fifth application: Rayleigh scattering and the colour of the sky

1. Model an atmospheric molecule as an induced electric dipole p(t) under an incident electric
field E(t) of light frequency ω. Write p(t) in terms of polarisability αe and E(t).

2. Express the power radiated by an oscillating dipole in terms of its amplitude p0, frequency
ω, and observation angle θ.

3. Deduce the dependence of the scattered intensity on ω and αe.

4. Using the relation between frequency ω and wavelength λ, show that scattered intensity
varies as 1/λ4.

5. Explain why this 1/λ4 dependence leads to the blue colour of the sky.

6. Although violet light is scattered more than blue light, why does the sky appear blue rather
than violet?

7. Based on this phenomenon, explain why sunlight appears reddish during sunrise or sunset.
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3.15 Bose-Einstein Condensation [7] (PS) ⋆⋆⋆⋆

(Correction)

We consider a gas of identical bosonic particles with zero spin in a container of volume V in contact
with a thermostat at temperature T . The particles do not interact with each other.

1. The gas is described in the grand canonical ensemble. We aim to express the average number
of particles as a function of the temperature T and the chemical potential µ in the form of
an integral, without attempting to evaluate it.

(a) Write the expression of the average number ⟨nε⟩ of particles in a state of energy ε
according to Bose-Einstein statistics, as a function of µ, T , and kB .

(b) Considering a gas in a cubic box of volume V with periodic boundary conditions, ex-
press the density of states g(ε) in the approximation of a non-relativistic free gas of
particles of mass m.

(c) Deduce that the total average number of particles can be written as:

⟨N⟩ =
∫ +∞

0

g(ε)
eβ(ε−µ) − 1

dε (3.170)

where β = 1/(kBT ), then rewrite this expression as an integral depending on T , µ,
and m, without solving it.

2. We now assume the system is closed and contains N particles. The chemical potential then
becomes a function of temperature and particle density ρ = N/V . Using the previous result
and the equivalence between canonical and grand canonical ensembles, show that µ(T ) is
given by:

ρ =
(

2mkBT
4π2ℏ2

)3/2 ∫ +∞

0

x1/2

ex/φ(T ) − 1
dx, (3.171)

with φ(T ) = eµ(T )/(kBT ).

3. From equation (3.171), justify that µ(T ) increases as the temperature decreases.

4. Recall why the chemical potential must be negative. Conclude that equation (3.171) can only
be valid for T ≥ TBE, and determine the explicit expression of TBE. Given:∫ +∞

0

x1/2

ex − 1dx ≃ 2.612 ×
√
π

2 . (3.172)

5. For T ≤ TBE, µ(T ) = 0 and equation (3.171) is not satisfied. Identify the flaw in the reasoning
from the previous questions.

6. To fix this issue, the population of the ground state, denoted N0, is isolated. Justify that

N = N0 +
(

2m
4π2ℏ2

)3/2
V

∫ +∞

0

ε1/2

eβε − 1dε. (3.173)

Then compute N0 as a function of N , T , TBE, and plot N0/N as a function of T/TBE. Com-
ment.
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7. Justify that for T ≤ TBE, the grand potential J is given by

J
kBT

= − ln(1 +N0) +
(

2m
4π2ℏ2

)3/2
V

∫ +∞

0
ε1/2 ln

(
1 − e−βε) dε. (3.174)

What does this expression become in the thermodynamic limit? Then compute the pressure
of the bosonic gas for T ≤ TBE and N ≫ 1, and comment on its dependencies. Given:∫ +∞

0

x3/2

ex − 1dx ≃ 1.341 × 3
√
π

4 . (3.175)
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3.16 Decay Chain (FS) ⋆⋆⋆⋆⋆

(Correction)

We consider a radioactive decay chain formed by n isotopes denoted (Nk), which decay succes-
sively into one another (N1 → N2 → · · · → Nn), the last one being assumed stable. We denote by
Nk(t) the number of nuclei of type k at time t ≥ 0. Each nucleus Nk is unstable for k ∈ J1, n− 1K
and has a radioactive decay constant λk > 0. The last isotope Nn is stable, which amounts to
setting λn = 0.

3.16.1 Physical modeling of the decay chain

1. Justify that the functions Nk(t) satisfy the differential system:

dN1

dt = −λ1N1,
dNk
dt = −λkNk + λk−1Nk−1 for k ∈ J2, nK. (3.176)

2. Solve the case n = 2 with initial conditions N1(0) = N0, N2(0) = 0. Sketch qualitatively
the curves N1(t) and N2(t).

3. Show that the solution satisfies for all t ≥ 0:

N1(t) +N2(t) = N0. (3.177)

Physically interpret this: it corresponds here to conservation of matter in the system.

4. Discuss the time when the quantity N2(t) is maximal, and give its expression if λ1 ̸= λ2.

3.16.2 Mathematical study of the differential system

Let A ∈ Mn(R) be the matrix defined by:

A =


−λ1 0 0 · · · 0
λ1 −λ2 0 · · · 0
0 λ2 −λ3 · · · 0
...

. . . . . . . . .
...

0 · · · 0 λn−1 0

 . (3.178)

Consider the vector system:

dN
dt = AN, N(0) = N0 ∈ Rn. (3.179)

1. Show thatA is diagonalizable over R if the λk (for k ∈ J1, n−1K) are pairwise distinct. Give
the eigenvalues.

2. Show that the system admits a unique global solution on R+ for any initial condition N0.

3. Let us define E(t) = ∥N(t)∥2. Show that E is differentiable. We then aim to prove that E is
a decreasing function.
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(a) Show that

∀x ∈ Rn, ⟨x|Ax⟩ = ⟨x|Sx⟩ , where S = A+AT

2 . (3.180)

(b) Show that
⟨x|Sx⟩ = −1

2
∑
k

λk(xk − xk+1)2 − λ1

2 x1. (3.181)

(c) Discuss the sign of E′(t). Deduce the stability of the system.

4. Assume that λk ≥ α > 0 for all k ∈ J1, n− 1K. We define a norm satisfying:

∀x ∈ Rn, ∀M ∈ Mn(R), ∥Mx∥ ≤ C × ξ∥x∥, (3.182)

where ξ satisfies ξ > µp ∈ Sp(M), ∀p.
Prove that:

∥N(t) − N∞∥ ≤ Ce−αt∥N0∥, where N∞ = (0, . . . , 0, N∞). (3.183)

5. Assume that λk ≥ α > 0 for all k ∈ J1, n− 1K. We define a norm satisfying:

∀x ∈ Rn, ∀M ∈ Mn(R), ∥Mx∥ ≤ C × ξ∥x∥, (3.184)

where ξ satisfies ξ > µp ∈ Sp(M), ∀p.
Prove that:

∥N(t) − N∞∥ ≤ Ce−αt∥N0∥, where N∞ = (0, . . . , 0, N∞). (3.185)

6. Verify that the system conserves the total amount of matter:

n∑
k=1

Nk(t) =
n∑
k=1

Nk(0), ∀t ≥ 0. (3.186)
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3.17 From the Principle of Least Action to Einstein’s Equa-
tions (SR, AM, GR) ⋆⋆⋆⋆⋆

(Solution)

3.17.1 From Classical Geometry to Lorentzian Geometry

1. Geometry of a surface in R3.

Let Σ ⊂ R3 be a smooth surface defined locally by a parametric chart:

X(u, v) =

x(u, v)
y(u, v)
z(u, v)

 (3.187)

We denote ∂uX and ∂vX the tangent vectors to the surface, obtained as partial derivatives
of the chart.

(a) Show that the square of the infinitesimal length element can be written as:

ds2 = E du2 + 2F dudv +Gdv2 (3.188)

where:
E = ∂uX · ∂uX, F = ∂uX · ∂vX, G = ∂vX · ∂vX (3.189)

(b) Show that the matrix:

g =
(
E F

F G

)
(3.190)

defines such an inner product, and hence a Riemannian metric on the surface.
(c) Compare with the flat case of the plane R2: show that in the canonical basis, we have

ds2 = dx2 + dy2. Discuss the role played by the parametric chart (u, v) in the local
definition of the metric.

(d) Show that g is symmetric, and thus diagonalizable. Deduce that its eigenvalues are real.
These eigenvalues are called the principal curvatures.

(e) We define the Gaussian curvature κ as the product of the two principal curvatures.
Why is it a fundamental geometric invariant of a surface?

2. Intrinsic Definition of a Metric.

Let M be a differentiable manifold of dimension n. A Riemannian metric is a tensor field
(gp)p∈M that, at each point p, defines an inner product on the tangent space TpM.

(a) Show that locally, in a chart (xµ), the length element is written as:

ds2 = gµν(x) dxµ dxν (3.191)

(b) What is the relationship between this expression and the one obtained in (1)?

3. Study of the Hyperbolic Metric on the Upper Half-Plane

Consider the upper half-plane:

H = {(x, y) ∈ R2 | y > 0} (3.192)
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endowed with the so-called hyperbolic metric given by the length element:

ds2 = dx2 + dy2

y2 (3.193)

(a) Verify that this expression defines a Riemannian metric (symmetric and positive defi-
nite) on H.

(b) Compute the metric matrix g and its determinant det g.
(c) Compute the Christoffel symbols Γλµν associated with this metric.
(d) In two dimensions, κ is given by:

κ = − 1√
det g

[
∂

∂x

(
Γ2

12
√

det g
g22

)
− ∂

∂y

(
Γ2

11
√

det g
g22

)]
. (3.194)

(e) Conclude about the nature of the curvature of this metric (positive, zero, or negative).
(f) Using the principle of least action, we now compute the geodesics in this metric:

i. Write the Lagrangian L(y, y′) associated with the length of a curve parametrized
by x.

ii. Compute the derivative ∂y′L.
iii. Use the Beltrami’s identity and show that, for λ ̸= 0,

y
√

1 + (y′)2 = 1
λ

(3.195)

iv. Deduce that,
(x− x0)2 + y2 = 1

λ2 (3.196)

v. Discuss the special case λ = 0. What geodesics are obtained in this case?
vi. (Bonus) By analyzing the form of the geodesics, what can we say about the sym-

metry of the hyperbolic plane?

(g) (Bonus) Provide a geometric interpretation of this metric and its connection to non-
Euclidean geometry.

4. Pseudo-Riemannian Manifolds.

(a) Define a Lorentzian metric on a 4-dimensional manifold M. What is its signature?
(b) Give the form of the Minkowski metric:

ηµν = diag(−1,+1,+1,+1) (3.197)

What do vectors with negative, zero, or positive norm represent?

5. Curves and Geodesics.

Let γ(t) = X(u(t), v(t)) be a curve on a surface Σ ⊂ R3.

(a) Show that the length of the curve is:

L[γ] =
∫ t2

t1

√
gij ẋi ẋj dt (3.198)

(b) Show that the curves which minimize this length satisfy the corresponding Euler-
Lagrange equations.
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3.17.2 Dynamics of Particles in Curved Spacetime

1. Consider a free particle of mass m in a spacetime endowed with a metric gµν(x). Its action
is21:

S[x] = 1
2

∫
gµν(x) ẋµ ẋν dτ (3.199)

Show, using the principle of least action, that the equations of motion are:

ẍλ + Γλµν ẋµ ẋν = 0 (3.200)

where the Christoffel symbols are:

Γλµν = 1
2g

λσ (∂µgνσ + ∂νgµσ − ∂σgµν) (3.201)

2. Show that if one chooses a locally inertial frame (coordinates ξα), then:

d2ξα

dτ2 = 0 (3.202)

and that via a change of variables, this implies the geodesic equation in the coordinates xµ.

3.17.3 Curvature and the Einstein-Hilbert Action

We define the Levi-Civita connection as the unique torsion-free connection satisfying ∇λgµν = 0.
Here are the formulas for the Riemann tensor, Ricci tensor, and scalar curvature:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (3.203)

Rµν = Rλµλν , R = gµνRµν (3.204)

1. Show that if the metric is locally flat, then the Riemann tensor vanishes.

2. We seek a scalar, covariant action constructed solely from gµν and its derivatives up to order
2. Show that the Einstein-Hilbert action:

S[g] = 1
16πG

∫
R

√
−g d4x (3.205)

is (under these assumptions) the only possible one. Justify this uniqueness.

3.17.4 Principle of Least Action and Einstein’s Equations

1. Let a field action be S[φ] =
∫

L(φ, ∂φ) d4x. Its functional variation is defined by:

δS[φ] = d
dεS[φ+ εη]

∣∣∣∣
ε=0

(3.206)

where η(x) is an arbitrary compactly supported variation.
Show that the principle of least action implies the Euler-Lagrange equations:

δS

δφ
= ∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (3.207)

21This can be shown. It is done (up to a constant factor) in Exercise 3.8.
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2. Apply this principle to the Einstein-Hilbert actionS[g] to recover the gravitational field equa-
tions in vacuum:

Rµν − 1
2Rgµν = 0 (3.208)

3. Add a matter term:

Stotal = 1
16πG

∫
R

√
−g d4x+ Smatter[g, ψ] (3.209)

and define the energy-momentum tensor by:

Tµν := − 2√
−g

δSmatter

δgµν
(3.210)

(a) Justify this definition, explaining what is meant by the functional derivative with re-
spect to the metric.

(b) Deduce the full Einstein field equations:

Rµν − 1
2Rgµν = 8πGTµν (3.211)
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3.18 A simple quantum particle near a black hole
(QM, MA, GR, SP) ⋆⋆⋆⋆⋆

(Correction)

3.18.1 Proper time and relativistic gravitational potential

In the vacuum surrounding a spherically symmetric, uncharged black hole, the Schwarzschild met-
ric reads:

ds2 = −
(

1 − rs
r

)
c2dt2 +

(
1 − rs

r

)−1
dr2 + r2dΩ2, (3.212)

where rs = 2GM
c2 is the Schwarzschild radius.

1. Show that the proper time of a particle at rest at coordinate r is given by:

dτ =
√

1 − rs
r

dt. (3.213)

2. Assuming that the total energy is proportional to the ticking rate of a clock (as in quantum
mechanics), deduce that the effective energy of a stationary particle is:

E(r) = mc2
√

1 − rs
r
. (3.214)

3. Expand this expression as a series to second order in rs

r ≪ 1. Recover the Newtonian po-
tential and a relativistic correction:

E(r) = mc2 − GMm

r
− 1

2
G2M2m

c2r2 + o
(r2

s

r2

)
(3.215)

4. Identify the effective potential:

Veff(r) = −GMm

r
− 1

2
G2M2m

c2r2 . (3.216)

3.18.2 Expansion near the horizon

Set r = rs + x with x ≪ rs.

1. Express Veff(r) as a function of x, and expand to leading order. Show that:

V (x) = 3
2
GMm

r2
s

x+ const + o(x). (3.217)

2. Identify an effective linear potential:

V (x) = mgeffx, with geff = 3
2
GM

r2
s

. (3.218)

and explain why this situation is analogous to that of a uniform gravitational field near a
surface.
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3.18.3 Quantum analysis of the linear potential

1. Write the Schrödinger equation in the local frame near the horizon:

− ℏ2

2m
d2ψ

dx2 +mgeffxψ(x) = Eψ(x). (3.219)

2. Introduce the dimensionless variable ξ = x−x0
xc

, and show that the equation becomes an Airy
equation. Define x0 and xc.

3. Deduce that one solution is:
ψ(x) = αAi(ξ) (3.220)

with α a constant to be defined, and the function Ai also to be defined22.

4. What condition must ψ(0) satisfy? Observe that this induces a discrete sequence (En) of
bound state energies.

3.18.4 Asymptotic Study of the Zeros of Ai

We consider the Airy function Ai, defined as the solution of the differential equation23:

ψ′′(x) = xψ(x) (3.222)

with the decay condition at infinity:

lim
x→+∞

ψ(x) = 0. (3.223)

We denote by Ai the C ∞ solution of (E) satisfying this property.

Study of the Airy Function

In this section, we show that the function x 7→ Ai(x) vanishes infinitely many times on R∗
−, but

has no zeros on R+.

1. Show that Ai is of class C ∞ on R, and that its zeros are isolated.

2. Show that if x ≥ 0, then for all x, Ai′′(x) = xAi(x) ≥ 0 if Ai(x) ≥ 0, and deduce that if
Ai vanishes at a point x0 > 0, then Ai(x) = 0 for all x > x0, which contradicts the decay
towards 0. Deduce that Ai(x) > 0 for all x > 0.

3. Assume, for the sake of contradiction, that the function Ai is strictly positive on R∗
−.

(a) Show that the derivative Ai′ is strictly decreasing on R− and that the following limit
exists (possibly infinite):

ℓ := lim
x→−∞

Ai′(x) ∈ [−∞,+∞). (3.224)
22In fact, another function is also a solution, but it is not considered in the WKB approximation. The other solution of

the Airy equation reads:

Bi(s) =
1
π

∫
R+

exp
(

−
t3

3
+ st

)
+ sin

(
t3

3
+ st

)
dt. (3.221)

23This section is considerably longer, more mathematical, and more technical than the previous ones; it can be omitted if
one naturally accepts that the function x 7→ Ai admits a countable infinity of zeros on R∗

−. However, for the skeptics and
physicists who do not shy away from mathematics, this section is for you.
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(b) Study the case where ℓ = limx→−∞ Ai′(x) is a finite nonzero real.

i. Show that in this case, the improper integral∫ 0

−∞
Ai′′(t)dt = lim

x→−∞

(
Ai′(0) − Ai′(x)

)
(3.225)

converges.
ii. Why does this convergence imply that Ai′′(t) → 0 as t → −∞?

iii. Show that the convergence of the integral
∫
R∗

−
Ai′′ implies that Ai(t) =

−∞
o( 1

|t|2+ε ),
with ε > 0.

iv. Finally, show that Ai must satisfy Ai(t) =
−∞

ℓ|t| + o(|t|). Deduce a contradiction,
thus excluding the case ℓ ∈ R∗ finite.

(c) Study the case ℓ = 0:

i. Assuming ℓ = 0, show that for every ε > 0, there exists M < 0 such that for all
x < M , Ai′(x) > −ε.

ii. By integrating, deduce that

Ai(x) = Ai(M) +
∫ x

M

Ai′(t)dt > Ai(M) − ε|x−M |, (3.226)

and hence that Ai(x) tends to +∞ as x → −∞.
iii. Deduce a contradiction.

(d) Study the case ℓ = −∞:

i. Using the intermediate value theorem, show that

∀M < 0,∃χ < 0,∀t < χ, Ai(t) − Ai(χ) > M(t− χ) (3.227)

ii. Show that Ai′′(t) =
−∞

−Mt2 + O(1).

iii. Show that this condition implies that Ai′(t) −→
t→−∞

+∞.

(e) Conclude.

Existence of a Countable Infinity of Zeros

Recall that the function Ai : R → R is a solution of the following differential equation:

Ai′′(x) + |x| Ai(x) = 0 for all x ≤ 0, (3.228)

For every n ∈ N∗, we set xn := −n2 and In := [xn, xn + δn] with δn := 2π
n .

1. Show that for all x ∈ In, we have

|x| = n2 + εn(x) with εn(x) = O
(

1
n

)
. (3.229)

2. Deduce that on In, the equation satisfied by Ai can be written as

Ai′′(x) + n2Ai(x) = fn(x), with fn(x) = −εn(x)Ai(x). (3.230)
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3. We wish to show that any function y ∈ C 2(In) written as a linear combination of the
homogeneous basis

y1(x) := cos
(
n(x− xn)

)
, y2(x) := sin

(
n(x− xn)

)
, (3.231)

can be (not uniquely) expressed in the form

y(x) = un(x)y1(x) + vn(x)y2(x), (3.232)

for functions un, vn ∈ C 1(In). We also wish to show that this method is equivalent to
seeking a particular solution.

(a) Show that, for each x ∈ In, the linear map

Φx : R2 → R2, (u(x), v(x)) 7→
(
u(x)y1(x)+v(x)y2(x), u(x)y′

1(x)+v(x)y′
2(x)

)
,

(3.233)
is well-defined and linear.

(b) Show that for each x ∈ In, the linear map

Φx : R2 → R2, (u, v) 7→
(
uy1(x) + vy2(x), uy′

1(x) + vy′
2(x)

)
(3.234)

is an isomorphism.
(c) Consider now the linear map between function spaces

Φ : C 1(In)2 → C 0(In), (u, v) 7→ uy1 + vy2, (3.235)

where uy1 + vy2 is the pointwise-defined function on In.
Show that ker(Φ) is nontrivial, i.e., there exists (u, v) ̸= (0, 0) in C 1(In)2 such that

u(x)y1(x) + v(x)y2(x) = 0 for all x ∈ In. (3.236)

Hint: Assume a proportionality relation between u, v and y1, y2 via an intermediate
function α.

(d) Deduce that the set of representations of y is an affine class whose direction is generated
by the pairs (

sin(n(x− xn)), − cos(n(x− xn))
)
. (3.237)

(e) Show that such a function α can be well-defined and of class C 1(In), for n sufficiently
large. Interpret this kernel as the source of the non-uniqueness of the functions un, vn
for the representation of y.

(f) Deduce that imposing the auxiliary condition

u′
n(x)y1(x) + v′

n(x)y2(x) = 0 (3.238)

is equivalent to choosing a section (a "complement") of the kernel, ensuring the unique-
ness of the functions un, vn. In other words, show that this condition fixes α.

(g) Conclude that the representation y = uny1 + vny2 with this condition is equivalent,
in terms of solutions, to the classical form

y = yp +Ay1 +By2, (3.239)

where the particular part yp is incorporated in the variation of coefficients un, vn.
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(h) By differentiating y = uny1 + vny2 and using the auxiliary condition, determine a
simplified expression for y′(x).

(i) By differentiating again and substituting into the equation y′′ + n2y = fn, establish
the following linear system, solve it, and thus make explicit the functions un and vn:{

u′
n(x)y1(x) + v′

n(x)y2(x) = 0,
u′
n(x)y′

1(x) + v′
n(x)y′

2(x) = fn(x).
(3.240)

4. Estimation of Variations on In

(a) Show that ∥fn∥L∞(In) = O
( 1
n

)
. Deduce that, for all x ∈ In,

|un(x) − un(xn)| ≤ O(n−2). (3.241)

(b) Do the same for vn(x) − vn(xn). Deduce that un, vn are almost constant on In.

5. Final Approximation and Consequence

(a) Setting an := un(xn) and bn := vn(xn), show that for all x ∈ In,

y(x) = an cos
(
n(x− xn)

)
+ bn sin

(
n(x− xn)

)
+ O

(
n−2). (3.242)

Show that y converges uniformly to Ai.
(b) Deduce that if y = Ai does not vanish on In, then the main combination an cos +bn sin

has constant sign on In.

6. Show that y can also be written as

y(x) = rn cos[n(x− xn) − φ], an ̸= 0 (3.243)

with φ = arctan
(
bn

an

)
, rn =

√
a2
n + b2

n.

7. Deduce that any nontrivial linear combination of cos(n(x− xn)) and sin(n(x− xn)) changes
sign on any interval of length strictly greater than π

n . Deduce that if the approximate solution
remained of constant sign on In, then |In| < π

n .

8. Conclude.

We now denote the negative zeros of Ai by

ck < ck+1 < 0,∀k and we set wn := −cn > 0. (3.244)

Integral Representation and Qualitative Study

We admit that the Airy function admits a real integral representation over R given by:

Ai(x) = 1
π

∫ +∞

0
cos
(
t3

3 + xt

)
dt. (3.245)

1. We aim to show that this integral converges for all x ∈ R and defines a continuous function.

(a) Show that studying Ai reduces to studying the following integral,

h(x) =
∫ ∞

0
eifx(t)dt (3.246)
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(b) Quickly analyze fx. Compute the minimum t0(x).
(c) Let R be to be determined. By splitting the integral and cleverly expressing eifx(t) in

terms of its derivative with respect to t, show that h is well-defined for all x ∈ R.
(d) Let x, y ∈ R. Show that

|h(y) − h(x)| −→
y→x

0 (3.247)

(e) Using a similar method, show that h is of class C 1.

2. To rigorously show that Ai(x) → 0 as x → +∞, we will use the method of steepest descents.
We replace the previous single question with the following steps (note fx(t) = xt+ t3

3 ) :

(a) Show that t 7→ e ifx(t) is an entire function of the complex variable t. Conclude that
the integration contour R can be deformed in the complex plane without encountering
singularities.

(b) Solve f ′
x(t) = 0 in C. Verify that the saddle points are

t⋆ = ±i
√
x, (3.248)

and determine which one(s) satisfy Re(ifx(t⋆)) < 0.
(c) Explicitly construct a descent contour Γx (arising from a deformation of R) passing

through t⋆ = i
√
x in the direction of steepest descent. Parametrize a neighborhood of

t⋆ by
t = t⋆ + z, z = ux−1/4, u ∈ R. (3.249)

(d) Expand fx in a Taylor series around t⋆. Show that, for t = t⋆ + z,

fx(t) = fx(t⋆) + 1
2f

′′
x (t⋆) z2 + 1

6f
(3)
x (ξ) z3, (3.250)

with f ′′
x (t⋆) = 2t⋆ and f (3)

x ≡ 2. Multiplying by i and after the change z = ux−1/4,
obtain the identity

ifx(t) = ifx(t⋆) − u2 + i O
(
u3x−3/4), (x → ∞), (3.251)

uniformly for |u| ≤ M fixed.
(e) Show the local uniform estimate: for all M > 0,

e ifx(t) = e ifx(t⋆)e−u2(
1 + o(1)

)
uniformly for |u| ≤ M, (3.252)

and deduce, via the change of variable dt = x−1/4 du and dominated convergence,∫
|u|≤M

e ifx(t) dt = e ifx(t⋆)x−1/4
(∫

|u|≤M
e−u2

du
)

(1 + o(1)). (3.253)

(f) Control the tail contribution |u| > M : show that, for fixed large M ,∣∣∣∣∣
∫

|u|>M
e ifx(t) dt

∣∣∣∣∣ ≤ x−1/4
∫

|u|>M
e−u2

du, (3.254)

and that this bound can be made arbitrarily small independently of x.
(g) Show that the remaining contribution on Γx \ (neighborhood of t⋆) is negligible com-

pared to x−1/4e− 2
3x

3/2
: on this portion of Γx we have Re(ifx(t)) ≤ −cx3/2 for some

constant c > 0, yielding an exponential bound.
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(h) Explicitly compute ifx(t⋆) for t⋆ = i
√
x and conclude:

ifx(i
√
x) = − 2

3x
3/2, (3.255)

then gather the estimates to obtain the asymptotic

Ai(x) ∼ 1
2
√
π
x−1/4e− 2

3x
3/2

(x → +∞), (3.256)

in particular Ai(x) → 0.

Asymptotic Approximation of Ai(−x) for x → +∞

We recall the definition
fx(t) := t3

3 − xt. (3.257)

1. Compute the stationary point t0 of the phase fx on [0,+∞[ and show that it is unique.

2. Show that for any δ > 0, there exists a constant cδ > 0, independent of x, such that for all t
satisfying

|t− t0| ≥ δ, (3.258)

we have
|f ′
x(t)| = |t2 − x| ≥ cδ. (3.259)

3. Let a, b satisfy 0 ≤ a < b and mint∈[a,b] |f ′
x(t)| ≥ cδ > 0. Show that, by integration by

parts, ∣∣∣∣∣
∫ b

a

eifx(t)dt

∣∣∣∣∣ ≤ 2
cδ

+ (b− a) sup
t∈[a,b]

∣∣∣∣ f ′′
x (t)

f ′
x(t)2

∣∣∣∣ . (3.260)

4. Show that for any fixed δ > 0, the contribution outside a neighborhood of t0 =
√
x is

o(x−1/4) as x → +∞, i.e., ∫
t≥0

|t−t0|≥δ

eifx(t)dt = o
(
x−1/4

)
. (3.261)

To do so, perform successive integrations by parts using the uniform lower bound of |f ′
x(t)|

outside this neighborhood, and justify why this contribution becomes negligible compared
to the one from the vicinity of t0.

5. Show that for t close to t0, we have the expansion

fx(t) = fx(t0) + f ′′
x (t0)

2 (t− t0)2 +Rx(t), (3.262)

with

Rx(t) = f
(3)
x (ξ)

6 (t− t0)3, (3.263)

where ξ lies between t and t0. Compute f ′′
x (t0) and f (3)

x (t), and show that there existsC > 0
such that

|Rx(t)| ≤ C|t− t0|3 for |t− t0| ≤ δ. (3.264)

6. Show that for all t,
|eiRx(t) − 1| ≤ |Rx(t)|. (3.265)
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7. Define
εx :=

∫
|t−t0|≤δ

eifx(t0)ei
f′′

x (t0)
2 (t−t0)2

(
eiRx(t) − 1

)
dt, (3.266)

and show that
|εx| ≤ C ′δ4. (3.267)

8. Perform the change of variable

s = (t− t0)
√

|f ′′
x (t0)|

2 , (3.268)

and show that ∫
|t−t0|≤δ

ei
f′′

x (t0)
2 (t−t0)2

dt =

√
2

|f ′′
x (t0)|

∫
|s|≤Sx

eiσs
2
ds, (3.269)

where σ = sign(f ′′
x (t0)) and Sx = δ

√
|f ′′

x (t0)|
2 .

9. Show that Sx → +∞ as x → +∞.

10. Compute the complete Fresnel integral:∫ +∞

−∞
eiσs

2
ds =

√
πeiσπ/4. (3.270)

11. Combine all previous approximations to obtain the asymptotic equivalence

Ai(−x) ∼ C

x1/4 cos
(

2
3x

3/2 − π

4

)
, (3.271)

specifying the constant C (or noting that it depends on the exact normalization of Ai).

Asymptotic Expansion of the Sequence (wn)

1. Deduce that the zeros wn of Ai(−x) satisfy asymptotically:

cos
(

2
3w

3/2
n − π

4

)
= 0. (3.272)

2. Show that this equation implies:

2
3w

3/2
n =

(
n− 1

2

)
π + π

4 . (3.273)

3. Deduce that:

wn ∼
(

3π
2
(
n− 1

4
))2/3

. (3.274)
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Asymptotic Expansion of the Zeros wn to Order O(1/n2)

Recall that the negative zeros of Ai(−x), denoted wn, satisfy asymptotically:

2
3w

3/2
n = π

(
n− 1

4

)
. (3.275)

Let αn :=
( 3π

2 (n− 1
4 )
)2/3 denote the first approximation of wn.

1. Set wn = αn + βn, with βn = o(αn), and expand (αn + εn)3/2 in a Taylor series to second
order around αn.

2. Substitute this expansion into the equation satisfied bywn, and deduce an explicit asymptotic
expression for εn to order O(α−1

n ).

3. Deduce an expansion of wn to order O(1/n2), also expanding α−1
n in terms of n.

Energy of Bound States

1. Deduce a series expansion of (En) to order O(1/n2).

2. For M being the mass of the Sun, estimate the energy levels. Interpret the results.

3.18.5 Horizon, Absorption, and Decoherence

In the previous section, we obtained stationary bound states described by Airy functions, ψ(x) =
αAi(ξ), with decay towards zero as x → +∞ and a damped oscillatory behavior as x → −∞.

However, this idealized model assumes perfect confinement, which is only an approximation. In
reality, the particle can escape toward the region x → −∞, corresponding to the interior of the
black hole, leading to probability loss and temporal decay of the quantum state.

1. Explain why the decay of Ai(ξ) to zero on the left (for x → −∞) does not prevent a slow
leakage of the particle into this region. One may rely on the asymptotic approximation for
x → −∞:

Ai(x) ∼ C

|x|1/4 cos
(

2
3 |x|3/2 − π

4

)
, (3.276)

which reflects a damped oscillatory, non-confined behavior.

2. Considering this leakage, justify that the quantum state is not strictly stationary and that the
norm of the wavefunction Ψ(x, t) decreases over time.

3. To model this decay, we introduce a complex energy:

E 7→ E − i
Γ
2 , Γ > 0, (3.277)

and write the non-Hermitian time-dependent Schrödinger equation:

iℏ
∂

∂t
Ψ =

(
E − i

Γ
2

)
Ψ. (3.278)

Show that the temporal solution is then:

Ψ(t) = Ψ(0)e−iE
ℏ te− Γ

2ℏ t, (3.279)

and interpret the decaying exponential factor as a norm loss associated with the leakage.
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4. Discuss the analogy with radioactive decay, noting that the quantity τ = ℏ
Γ corresponds to

the mean lifetime of the quasi-bound state near the horizon.

3.18.6 Opening: Hawking Radiation and Thermal Temperature

We aim to rigorously recover the temperature of the Hawking radiation associated with a Schwarzschild
black hole of mass M 24.

1. Action of a particle in the Schwarzschild metric

Recall the Schwarzschild metric, valid for r > rs = 2GM
c2 :

ds2 = −
(

1 − rs
r

)
c2dt2 +

(
1 − rs

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2). (3.280)

(a) Give the expression of the relativistic Lagrangian for a particle of massm in this metric,
assuming purely radial motion (θ = π/2, θ̇ = φ̇ = 0).

(b) Show that the classical action of the particle can be written as:

S = −mc
∫

ds = −mc
∫ √

−gµν ẋµẋνdλ. (3.281)

(c) Assuming the energy E of the particle is a constant of motion, express the radial ve-
locity ṙ in terms of E and r25.

2. Effective form of the radial action

We want to calculate the probability that a virtual particle generated in the vacuum just near
the horizon tunnels through.

(a) Derive the Hamilton-Jacobi equation in the relativistic framework:

∂µS∂
µS +mc2 = 0 (3.282)

(b) Show that the radial action of the particle, with energy E, can be written as:

Sr =
∫
prdr, (3.283)

where pr is the radial momentum obtained from the Lagrangian.
(c) Show that this momentum takes the form:

pr = 1
c

E

f(r) = 1
c

E

1 − rs

r

, (3.284)

considering a radial trajectory at fixed energy, and assuming the rest-mass energymc2

is negligible compared to E.

3. Tunneling effect and complex integral
24Relying, of course, on the semi-classical analogy between tunneling effect and the probability of spontaneous emis-

sion through a gravitational barrier. No QFT knowledge is required: only the ideas of relativistic classical action and the
variational principle will be used.

25Recall that continuous time symmetry implies energy conservation (Noether).
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(a) Consider integrating over I = [rs − ε, rs + ε], ε > 0. The integral Sr =
∫
I
prdr

diverges at r = rs because f(r) vanishes. Show that this divergence can be avoided
by integrating in the complex plane, deforming the integration path around the pole
r = rs.

(b) Deduce that
S =

∮
γ

prdr = 2πiErs
c

(3.285)

(c) Relating S to the quantum mechanical (WKB) tunneling effect, deduce the tunneling
probability in this case,

P(E) = exp
(

−8πGME

ℏc3

)
. (3.286)

4. Identification with a thermal law

Comparing P(E) with a Boltzmann-type distribution, rigorously identify the Hawking tem-
perature:

TH = ℏc3

8πGMkB
. (3.287)

5. Energy and entropy of the black hole

Assuming the emission of radiation can be treated as a reversible thermodynamic process,
we write26:

dS = dM
TH

. (3.288)

(a) Integrate this equation to obtain an explicit expression for the entropy:

S =
∫ dM
TH(M) =

∫ 8πGkBM
ℏc3 dM = 4πGkB

ℏc3 M2 + constant. (3.289)

(b) Using the fact that the horizon area is Σ = 4πr2
s = 16πG2M2

c4 , deduce:

S = kBc

4GℏΣ. (3.290)

6. Physical discussion

(a) Why is this entropy proportional to the area rather than the volume?
(b) What questions does this formula raise about the microscopic nature of black holes and

quantum gravity?

7. Evaporation time of a black hole

The evaporation time of a black hole can be estimated using the Stefan-Boltzmann law. The
energy radiated by a body of radius R and temperature T is, with σ the Stefan-Boltzmann
constant (c.f. 3.6):

L = 4πR2σT 4, (3.291)

(a) For a Schwarzschild black hole, show that

d
(
Mc2)
dt = −4πr2

sσT
4
H . (3.292)

26Here we change notation: S now denotes entropy.
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(b) Replacing rs and TH , show that the differential equation for the mass evolution is

dM
dt = − 1

15360π
c4ℏ
G2

1
M2 . (3.293)

(c) By integrating this equation, show that the total evaporation time of a black hole of
mass M is

te = 5120π G
2

c4ℏ
M3. (3.294)

(d) In SI units, estimate the order of magnitude of the evaporation time of a solar-mass
black hole M⊙.

(e) Compare this time to the current age of the universe (∼ 13.8 × 109 years). What
conclusion can be drawn regarding the observation of the evaporation of stellar black
holes?

(f) Estimate the evaporation time for a hypothetical primordial black hole of mass 1012 kg.
Would this evaporation be observable today?
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Chapter 4

Exercise Solutions

As you may notice, not all exercises have been solved yet. Unsolved exercises are marked with
the symbol △. The remaining solutions will be added progressively. If you would like to submit a
solution, please send it to the following email address in LaTeX format:
ryanartero2005@gmail.com.
Moreover, you can return to the exercise you were working on by clicking on its title, either at the
top of the page or at the beginning of the exercise.

4.1 Two-Body Problem

4.1.1 Center of Mass

We denote by r1, r2 the position vectors of the electron and the nucleus with respect to an arbitrary
reference frame, and by v1, v2 the corresponding velocities.

1. L = 1
2 (m1v2

1 +m2v2
2) − ϑ2

∥r1−r2∥ .

2.

R = m1r1 +m2r2

m1 +m2
=⇒ V = m1v1 +m2v2

m1 +m2
(4.1)

r = r1 − r2 =⇒ v = v1 − v2 (4.2)

µ = m1m2

m1 +m2
(4.3)

=⇒ L = 1
2(m1 +m2)V2 + 1

2µv2 − ϑ2

r
= LG(V) + Lr(r, v) (4.4)

3. The potential is central for the center of mass. This implies that J is a conserved quantity.

In the following, we focus exclusively on the internal motion described by Lr in polar coordinates
(r, θ) in the plane perpendicular to J.
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4.1.2 Integration of the Equations of Motion

1. The expression for the kinetic energy in polar coordinates in R2 is:

1
2µ(ṙ2 + r2θ̇2), (4.5)

which gives the Lagrangian:

L = 1
2µ(ṙ2 + r2θ̇2) − k

r
, with k = ϑ2. (4.6)

The Euler-Lagrange equations are:

d
dt (µṙ) − µrθ̇2 + k

r2 = 0, (4.7)

d
dt
(
µr2θ̇

)
= 0. (4.8)

Conjugate momenta are given by:

pr = ∂L
∂ṙ

= µṙ, pθ = ∂L
∂θ̇

= µr2θ̇. (4.9)

The Hamiltonian reads:

H = pr ṙ + pθ θ̇ − L = p2
r

2µ + p2
θ

2µr2 − k

r
. (4.10)

Hamilton’s equations are then:

ṙ = ∂H

∂pr
= pr

µ
, ṗr = −∂H

∂r
= p2

θ

µr3 − k

r2 , (4.11)

θ̇ = ∂H

∂pθ
= pθ
µr2 , ṗθ = −∂H

∂θ
= 0. (4.12)

pθ is a conserved quantity (since θ is a cyclic variable); thus, pθ = µr2θ̇ is constant — the
angular momentum J , fixed by the initial conditions.

Indeed, J = µr × ṙ = µrur × (ṙur + rθ̇uθ) = µr2θ̇ = pθ .

The first integral of energy is:

E = 1
2µṙ

2 + J2

2µr2 − k

r
. (4.13)

By differentiating pr = µṙ and substituting:

ṗr = µr̈ = J2

µr3 − k

r2 , (4.14)

we recover the radial equation of motion:

µr̈ = J2

µr3 − k

r2 . (4.15)

The first term on the right-hand side is the centrifugal force, the second is the attractive
Coulomb force.
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2. To eliminate time, we differentiate the composite function r(θ(t)):
Let r′(θ) = dr

dθ and r′′(θ) = d2r
dθ2 . Using pθ = µr2θ̇ = J , we get:

θ̇ = J

µr2 ,
d
dt = dθ

dt
d
dθ = J

µr2
d
dθ . (4.16)

Thus:
ṙ = r′ J

µr2 , r̈ = J

µr2
d
dθ

(
r′ J

µr2

)
. (4.17)

Setting u = 1
r , we obtain:

ṙ = −J

µ
u′, r̈ = −J2

µ2 (u′′ + u), (4.18)

and substitution into (7.25) gives:

−J2

µ2 (u′′ + u) = J2

µ
u3 − k

µ
u2. (4.19)

Multiplying both sides by −µ2

J2 yields:

u′′ + u = µk

J2 . (4.20)

3. The differential equation in u(θ):
u′′ + u = µk

J2 (4.21)

has the general solution:
u(θ) = A cos(θ + φ) + µk

J2 , (4.22)

hence:
r(θ) = 1

A cos(θ + φ) + µk
J2

. (4.23)

One can always choose the polar axis so that r(θ) is extremal at θ = 0 (or π), which gives
φ = 0:

r(θ) = 1
µk

J2 (1 + ε cos θ)
, (4.24)

where ε = AJ2

µk
is the eccentricity.

The constant A (or ε) is determined by the initial conditions or by the energy:

E = 1
2µṙ

2 + J2

2µr2 − k

r
. (4.25)

Using r(θ) and J = µr2θ̇, one can express E as a function of ε:

ε2 = 1 + 2EJ2

µk2 . (4.26)

4. Equation (4.24) defines a family of curves called conic sections (intersections of a cone with
a plane). Three subfamilies are distinguished according to the value of ε:
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• If ε < 1, the trajectory is an ellipse, closed, corresponding to energy E < 0: a bound
and periodic motion (in particular, ε = 0 gives a circle).

• If ε = 1, the trajectory is a parabola: a limiting case E = 0 separating bound and
unbound motions.

• If ε > 1, the denominator in 4.24 can vanish for some angle θ∞ = arccos
(
− 1
ε

)
: the

trajectory is a (open) hyperbola with asymptotes; E > 0 corresponds to a particle
arriving from infinity with nonzero initial velocity.

In all cases, the origin (center of force) is one of the foci of the conic.

4.1.3 Bohr Quantization

We consider the case E < 0 (bound states). The Bohr–Sommerfeld quantization conditions are:

Jθ :=
∮
pθ dθ = nθh, Jr :=

∮
pr dr = nrh, nθ, nr ∈ Z. (4.27)

1. For planar motion in a central potential, the angular momentum pθ is conserved:

pθ = J. (4.28)

Therefore:
Jθ =

∫ 2π

0
pθ dθ = 2πJ ⇒ J = nθℏ. (4.29)

Since nθ = 0 would correspond to a rectilinear trajectory passing through the center (which
is excluded here), we have:

nθ ∈ N∗. (4.30)

2. For Jr :
pr = µṙ = J

r2
dr
dθ (4.31)

since θ̇ = J
µr2 . Using the conic equation

r(θ) = p

1 + ε cos θ , p = J2

µϑ2 , (4.32)

we obtain:
dr
dθ = p ε sin θ

(1 + ε cos θ)2 . (4.33)

Thus:
pr = J

r2 · p ε sin θ
(1 + ε cos θ)2 = J ε sin θ

p
. (4.34)

Substituting p = J2

µϑ2 gives:

pr = µϑ2 ε sin θ
J

. (4.35)

For Jr :
Jr = 2

∫ rmax

rmin

pr dr. (4.36)

Changing variables r 7→ θ over half of the orbit (0 → π):

dr = dr
dθ dθ = p ε sin θ

(1 + ε cos θ)2 dθ, (4.37)
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so that:

pr dr = µϑ2 ε sin θ
J

· p ε sin θ
(1 + ε cos θ)2 dθ = µϑ2 p

J
· ε2 sin2 θ

(1 + ε cos θ)2 dθ. (4.38)

Since µϑ2 p
J = J (using p = J2

µϑ2 ), we find:

pr dr = J
ε2 sin2 θ

(1 + ε cos θ)2 dθ. (4.39)

As Jr corresponds to a complete radial cycle (forth and back), we integrate from 0 to π and
multiply by 2:

Jr = 2J ε2
∫ π

0

sin2 θ

(1 + ε cos θ)2 dθ. (4.40)

The condition Jr = nrh becomes:

2J ε2
∫ π

0

sin2 θ

(1 + ε cos θ)2 dθ = nrh. (4.41)

The integral can be evaluated by integration by parts or using the given formula:∫ π

0

sin2 θ

(1 + ε cos θ)2 dθ = π

ε2

(
1√

1 − ε2
− 1
)
. (4.42)

Hence:
2πJ

(
1√

1 − ε2
− 1
)

= nrh. (4.43)

Using 2πJ = nθh:

nθ

(
1√

1 − ε2
− 1
)

= nr. (4.44)

3. From the equation relating ε to the energy and angular momentum:

1 − ε2 = −2EJ2

µϑ4 . (4.45)

Substituting J = nθℏ and using the above relation between ε, nr , and nθ , we obtain:

1 − ε2 =
(nθ
n

)2
, n := nr + nθ. (4.46)

We then find:
En = − µϑ4

2ℏ2n2 , n ∈ N∗. (4.47)
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4.2 Rutherford Scattering Cross-Section

4.2.1 Deflection of a Charged Particle by an Atomic Nucleus

We work in a polar coordinate system (r, φ) in the plane of motion.

1. Angular Momentum: The angular momentum in polar coordinates is:

J = mr2φ̇. (4.48)

At past infinity, the particle has speed v0 and an impact parameter b. The angular momentum
is then:

J = −mbv0. (4.49)
The negative sign comes from the fact that φ decreases with time.

2. Equation of Motion: The central repulsive force is given by:

F = C

r2 r̂, where C = qQ

4πε0
. (4.50)

We decompose v = ṙ into two components. Projecting onto the direction perpendicular to
the polar axis, we find:

mv̇⊥ = C

r2 sinφ. (4.51)

3. Deflection Angle θ: Multiplying the equation by dt and changing variables, we use:

r2φ̇ = J

m
⇒ dt = mr2

J
dφ. (4.52)

Integrating from t = −∞ to t = +∞:

v0 sin θ =
∫
v̇⊥dt = C

J
(cos θ + 1). (4.53)

4. Relation to Kinetic Energy: The initial energy is E0 = 1
2mv

2
0 , so:

tan
(
θ

2

)
= C

2E0b
. (4.54)

4.2.2 Rutherford Scattering Cross-Section

1. Expression for the Differential Cross-Section: The general definition is dσ
dΩ = b

sin θ
∣∣ db

dθ
∣∣.

2. Using tan(θ/2): With:

b = C

2E0
cot
(
θ

2

)
,

db
dθ = − C

4E0

1
sin2(θ/2)

, =⇒ dσ
dΩ =

(
C

4E0

)2 1
sin4(θ/2)

. (4.55)

3. Limit of the Model: For θ → 0, we have sin(θ/2) → 0 so dσ/dΩ → ∞. The integral over
θ ∈ [0, π] diverges: the total cross-section is infinite. This reflects the infinite range of the
Coulomb interaction.

4. Experimental Interpretation: This model explains Rutherford’s experimental results: al-
pha particles can be strongly deflected. This implies the existence of a highly concentrated
atomic nucleus, as such deflection requires a very intense field in a very localized region1.

1By introducing the minimum approach distance amin for a head-on collision (b = 0), we have:

amin =
C

E0
. (4.56)
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4.3 Cherenkov Effect

1. The energy of a photon is given by the standard relation:

Eγ = hν (4.58)

In a medium with refractive index n, the phase velocity of light is reduced to c/n, and the
associated wave vector is:

k = 2πnν
c

(4.59)

The momentum of the photon in this medium is therefore:

pγ = ℏk = hnν

c
(4.60)

Thus, we obtain the desired relation:

pγ = hnν

c
(4.61)

Combining this with the expression for the energy Eγ = hν, we deduce:

pγ = n

c
Eγ (4.62)

2. The components of momentum are:

p = p′ cosφ+ pz cos θ, 0 = −p′ sinφ+ pz sin θ. (4.63)

3. We have:
p2
z = p2 − 2ppz cosφ+ p2

z. (4.64)

4. Energy conservation reads:√
p2c2 +m2c4 =

√
p2
zc

2 +m2c4 + hν, (4.65)

or equivalently:
1√

1 − β2
mc2 = 1√

1 − β2
f

mc2 + hν. (4.66)

5. Squaring both sides, we obtain:

p2
z = p2 − 2hνE

c2 + (hν)2

c2 , where E denotes the initial energy of the electron. (4.67)

6. Comparing the two expressions for p2
z , we can write:

p2 − 2ppz cosφ+ p2
z = p2 − 2hνE

c2 + (hν)2

c2 , (4.68)

The differential cross-section can then be rewritten as:

dσ

dΩ
=

a2
min
16

·
1

sin4(θ/2)
. (4.57)
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from which, after simplification, we get:

cosφ = hν

pc

(
1 − E

pc

)
+ hν

2pc , (4.69)

with E = γmc2, p = γmv, pz = nhν
c , so that:

cos θ = 1
nβ

(
1 − 1

2
1
γ2

)
. (4.70)

7. Finally:

cos θ = 1
nβ

[
1 + (n2 − 1) 1

2γ2

]
. (4.71)

Since E = γmc2, this can also be written as:

cos θ = 1
nβ

[
1 + n2 − 1

2
(
1 − β2)] . (4.72)

8. We must have:
1
nβ

[
1 + (n2 − 1) 1

2γ2

]
≤ 1. (4.73)

Since the bracketed term is clearly greater than 1, it is necessary (though not sufficient) that:

β >
1
n
. (4.74)

9. Photons are emitted between v = 0 and a frequency νmax such that cos θ = 1, i.e.:

0 ≤ ν ≤ E

h

(
1 − 1

nβ

)
, with E = νmaxh. (4.75)

10. The most energetic photons are emitted in the direction θ = 0.

11. All photons are emitted within a cone of half-angle φ, corresponding to the angle θ for a
photon of zero frequency:

φ = arccos
(

1
nβ

)
= arccos

(
1
n

)
≃ 20◦. (4.76)

12. For the effect to occur, one needs ν > 1
n , i.e. β > 1

n , hence:

E >
1√

1 − 1
n2

mc2. (4.77)

For an electron, this means E > 0.77 MeV, and for a proton, E > 1.4 GeV.
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4.4 Pulsed Magnetic Field Machine

1. Magnetic field of the coil

(a) For a circular loop of radius R, Biot-Savart’s law gives the field along the z-axis:

Bz(z, t) = µ0I(t)R2

2 (z2 +R2)3/2 . (4.78)

This is obtained by integrating over the loop, exploiting its circular symmetry.

(b) For z ≫ R, we can approximate
(
z2 +R2)3/2 ≃ z3. Thus,

Bz(z, t) ∼ µ0I(t)R2

2z3 , (4.79)

which is the expression for the field of a magnetic dipole with moment m = I(t)R2.

2. Induced electric field in biological tissue

(a) Faraday’s local law in cylindrical coordinates reads (assuming the induced electric field
is purely azimuthal):

(∇ × E)z = 1
r

∂(rEθ)
∂r

= −∂Bz
∂t

. (4.80)

Differentiating Bz with respect to time:

∂Bz
∂t

= µ0R
2

2 (z2 +R2)3/2 İ(t). (4.81)

The local equation thus becomes:

1
r

∂(rEθ)
∂r

= − µ0R
2 İ(t)

2 (z2 +R2)3/2 . (4.82)

(b) Integration for r < R: Integrating from 0 to r, imposing Eθ(0, t) = 0 (to avoid a
singularity): ∫ r

0

∂(r′Eθ(r′, t))
∂r′

dr′

r′ = − µ0R
2 İ(t)

2 (z2 +R2)3/2

∫ r

0
dr′. (4.83)

The solution obtained is:

rEθ(r, t) = − µ0R
2 İ(t)

2 (z2 +R2)3/2 · r
2

2 , (4.84)

which leads to:
Eθ(r, t) = − µ0R

2 İ(t)
4 (z2 +R2)3/2 r for r ≤ R. (4.85)

Integration for r > R: For r > R, since the magnetic flux remains confined within the
coil’s area, it is more appropriate to use Faraday’s integral law. Considering a circular
loop of radius r > R, Faraday’s law gives:∮

E · dℓ = 2πr Eθ = −dΦ
dt , (4.86)

where the flux Φ is that through the coil area, i.e.:

Φ = πR2 Bz(z, t) = πR2 µ0I(t)R2

2 (z2 +R2)3/2 . (4.87)
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The time derivative of Φ is:

dΦ
dt = πR2 µ0R

2

2 (z2 +R2)3/2 İ(t). (4.88)

Thus,

2πr Eθ = −π µ0R
4 İ(t)

2 (z2 +R2)3/2 , (4.89)

and therefore for r > R:

Eθ(r, t) = − µ0R
4 İ(t)

4r (z2 +R2)3/2 . (4.90)

Summary:

Eθ(r, t) =


− µ0R

2 İ(t)
4 (z2 +R2)3/2 r, r ≤ R,

− µ0R
4 İ(t)

4r (z2 +R2)3/2 , r ≥ R.

(4.91)

Continuity check: At r = R, the inner solution gives:

Eθ(R, t) = − µ0R
3 İ(t)

4 (z2 +R2)3/2 , (4.92)

and the outer solution gives exactly the same result. Continuity is thus ensured.

3. Effect on motor neurons

(a) The induced voltage across a disk of radius a is given by:

V =
∫ a

0
E(r, t) dr. (4.93)

Using the expression of Eθ(r, t) for r ≤ R (assuming a ≤ R for simplicity), we have:

V = − µ0R
2 İ(t)

4 (z2 +R2)3/2

∫ a

0
r dr = − µ0R

2 İ(t)
4 (z2 +R2)3/2 · a

2

2 . (4.94)

Thus,

V = − µ0R
2 a2 İ(t)

8 (z2 +R2)3/2 . (4.95)

(b) To activate the neuron, we need |V | ≥ Vthreshold. Therefore the activation condition is:

µ0R
2 a2 |İ(t)|

8 (z2 +R2)3/2 ≥ Vthreshold. (4.96)

4. Effect of pulsed magnetic fields on muscles When the magnetic stimulation machine
delivers rapid pulses, the time variation of the magnetic field induces an electric field in sur-
rounding tissues. In muscles, this electric field can depolarise cell membranes by activating
ion channels, generating an action potential. This excitation leads to involuntary muscle con-
traction, used in physiotherapy to enhance muscle rehabilitation, increase blood circulation,
and reduce pain.
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4.5 Metric of a Sphere

1. Using that d(cosu) = − sin udu and d(sin u) = cosudu, we get

dx2

R2 = [− sin θ sinφdφ+ cos θ cosφdθ]2 (4.97)

= (sin θ sinφdφ)2 − 2 sin θ sinφdφ cos θ cosφdθ + (cos θ cosφdθ)2, (4.98)
dy2

R2 = [sin θ cosφdφ+ cos θ sinφdθ]2 (4.99)

= (sin θ cosφdφ)2 + 2 sin θ sinφdφ cos θ cosφdθ + (cos θ sinφdθ)2, (4.100)
dz2

R2 = sin2 θdθ2. (4.101)

Adding these terms and using cos2 + sin2 = 1, we obtain

ds2 = R2(dθ2 + sin2 θ dφ2) (4.102)

2. From equation (4.102), factoring by dθ2 inside the square root, we have

ds = R

√
dθ2 + sin2 θ dφ2 (4.103)

= R

√
1 + sin2 θ φ′2dθ, φ′ = dφ

dθ (4.104)

= RLdθ. (4.105)

We notice that ∂φL = 0, so φ is a cyclic variable. Thus,

∂φ′L = λ ∈ R (4.106)

where λ is a constant.

3.

∂φ′L = λ ∈ R (4.107)

=⇒ φ′ sin2 θ√
1 + sin2 θφ′2

= λ (4.108)

=⇒ φ′2(sin4 θ − λ2 sin2 θ) = λ2 (4.109)

=⇒ dφ = λ
dθ

sin2 θ
√

1 − λ2

sin2 θ

. (4.110)

Integrating,

φ− φ0 = λ

∫ θ dα

sin2 α
√

1 − λ2

sin2 α

(4.111)

=u=cotα −λ
∫ cot θ du√

1 − λ2(1 + u2)
(4.112)

=t= u
β

−λ

β

∫ cot θ
β dt√

1 − t2
, β2 = 1 − λ2 (4.113)

= arccos
(

cot θ
β

)
. (4.114)
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Thus,

β cos(φ− φ0) = cot θ, (4.115)
β sin θ cos(φ− φ0) = cos θ. (4.116)

Using some trigonometric formulas, we obtain

R×
(
β cosφ0 cosφ sin θ + β cosφ0 sinφ sin θ

)
= cos θ (4.117)

=⇒ ax+ by − z = 0, (4.118)

where we substituted using spherical coordinates, with a = β cosφ0 = b.
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4.6 Blackbody Radiation

4.6.1 Number of Modes Excited per Frequency Unit

1. This is the D’Alembert equation in vacuum,

□E = 0. (4.119)

2. The cavity enforces a stationary solution, thus

E = cosωt
3∑

µ=1
Eµ sin(kµxµ)eµ. (4.120)

For each µ, the boundary condition is E(xµ = L) = 0. Hence,

sin(kµL) = 0, (4.121)
kµL = nµπ, (4.122)

kµ = nµπ

L
. (4.123)

3. We know that the norm of k equals the sum over each component,

∥k∥2 =
∑
µ

(nµπ
L

)2
, (4.124)

(
2π
λ

)2
= π2

L2

∑
µ

n2
µ, (4.125)

r2 =
(

2L
λ

)2
=
∑
µ

n2
µ. (4.126)

4. The volume of modes up to frequency ∥k∥ is

V (∥k∥) = 4
3π∥k∥3. (4.127)

The number of modes is the mode volume divided by the volume of a single mode, with some
factors. Since kµ = π

Lnµ and nµ ∈ N∗ (factor × 1
8 ), and polarization (factor ×2), we have

=⇒ N = 1
8 × 2 × V (∥k∥)(

π
L

)3 = 2 × 4
3πr

3 (4.128)

= 1
8 × 2 ×

4
3π∥k∥3

π3 L3 (4.129)

= 1
8 × 2 × 4

3π
( 2π
λ

)3

π3 L3 (4.130)

= π
8L3

3λ3 (4.131)

= 8πν3

3c3 L3, (4.132)

=⇒ dN
dν = 8πν2

c3 V (4.133)
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4.6.2 Ultraviolet Catastrophe

1. The system is in contact with a thermostat at temperature T , and the system is closed.

2. In 1D,
H = p2

2m + 1
2ω

2q2 (4.134)

3.
p(W = ε) = 1

Z
exp(−βε) (4.135)

We also have in 1D,
Z = 1

h

∫
R2
e−βHdqdp (4.136)

Hence, ∫
R
e−β p2

2m dp =
√

2mπ
β

(4.137)

And, ∫
R
e−βmω2q2

2 dq =
√

2π
mω2β

(4.138)

Hence,
Z = 1

h

2π
ωβ

= 1
h

T

β
(4.139)

4. We use the formula for the average energy,

⟨W ⟩ = −∂β lnZ = ∂β ln β = 1
β

= kBT (4.140)

5. It is then obvious to say that thanks to eq. 4.144 and the previous question,

u(ν, T ) = 8πν
2

c3 kBT (4.141)

Hence u ∝ ν2, which implies,
∫
R+ udν ∝

∫
R+ ν

2dν, which diverges.

4.6.3 Planck’s Law

1. The energy levels are discrete, so we sum:

Z =
∑
n

e−βWn = 1
1 − e−βW1

(4.142)

Thus, the average energy becomes by the same calculation,

−∂β lnZ = hν

eβhν − 1 (4.143)

Using, W1 = hν.

2. It is then obvious that,
u(ν, T ) = 8πν

2

c3
hν

eβhν − 1 (4.144)

102



Chapter 4. Exercise Solutions 4.6. Blackbody Radiation

4.6.4 Energy flux emitted by a black body

1. Monochromatic energy flux in a given direction.
The directional spectral intensity Iν(θ, φ) is defined as the energy transported per unit area,
time, frequency, and steradian, in direction (θ, φ).
The monochromatic energy flux emitted in direction (θ, φ) relative to the surface normal is:

dΦν = Iν(θ, φ) cos θ dΩ, (4.145)

where dΩ is the solid angle element around this direction, and cos θ comes from the projec-
tion of the flux on the normal to the surface (cf. fig 4.1).

Surface

n

Radiation

θ

Figure 4.1: The radiation is emitted with an angle θ relative to the normal: only cos θ contributes
to the flux through the surface. Indeed, it goes out in all directions, so we integrate over [0, π2 ], and
only the contribution of cos θ (the projection) matters.

2. Total energy flux emitted at frequency ν.
The total energy flux I(ν) emitted at frequency ν per unit surface is obtained by integrating
the elementary flux over the entire outgoing hemisphere (i.e. directions such that 0 ≤ θ ≤
π/2, cf. fig 4.2):

I(ν) =
∫

Ω+

Iν(θ, φ) cos θ dΩ. (4.146)

Surface

Ω+

Figure 4.2: The radiation goes out in all directions of the hemisphere Ω+: we integrate only for
θ ∈ [0, π/2].

3. Case of isotropic radiation
If the radiation is isotropic, we have Iν(θ, φ) = Iν = constant (independent of direction).
We can then take Iν out of the integral:

I(ν) = Iν

∫
Ω+

cos θ dΩ. (4.147)
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But: ∫
Ω+

cos θ dΩ =
∫ 2π

0

∫ π/2

0
cos θ sin θ dθ dφ. (4.148)

Calculating, ∫ π/2

0
cos θ sin θ dθ = 1

2 , and
∫ 2π

0
dφ = 2π. (4.149)

Hence,
I(ν) = Iν · 2π · 1

2 = πIν . (4.150)

4. Total emitted intensity (all frequencies combined)
We want to show that the spectral volumetric energy density u(ν) can be expressed as a
function of the directional intensity Iν(n) by:

u(ν) = 1
c

∫
S2
Iν(n) dΩ. (4.151)

• u(ν) dν represents the electromagnetic energy contained in a unit volume, for waves
whose frequency is between ν and ν + dν.

• Iν(n) is the spectral intensity in the direction n, that is, the energy transported per unit
time, per unit perpendicular surface, per unit frequency, per unit solid angle.

Consider an elementary surface ds and a radiation beam incident along a direction n making
an angle θ with the normal to ds.
The volume V swept by the rays in the direction n during a short time interval dt is given
by:

dV = cdt · ds · cos θ. (4.152)

The energy transported through the surface ds by these rays during this time is:

dE = Iν(n) · cos θ · ds · dt · dΩ. (4.153)

We deduce that the energy per unit volume associated with the direction n is:

dE
dV = Iν(n) · cos θ · ds · dt · dΩ

cdt · ds · cos θ = Iν(n)
c

dΩ. (4.154)

To obtain the total energy density, we sum over all propagation directions on the unit sphere:

u(ν) = 1
c

∫
S2
Iν(n) dΩ. (4.155)

If the radiation is isotropic, then Iν(n) = Iν is independent of direction. The integral be-
comes:

u(ν) = Iν
c

∫
S2

dΩ = Iν
c

· 4π. (4.156)

Hence,

u(ν) = 4π
c
Iν (4.157)
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5. Relation between total intensity and u(ν)
We take again the previous expression:

I =
∫ ∞

0
πIν dν, (4.158)

and substitute Iν = c
4πu(ν):

I =
∫ ∞

0
π · c

4πu(ν) dν = c

4

∫ ∞

0
u(ν) dν. (4.159)

4.6.5 Stefan’s Law

1. We previously demonstrated that,

I(T ) = c

4

∫
R+
u(ν, T )dν (4.160)

Replacing with what was obtained in eq. 4.144,

I = c

4
8π
c3

∫
R+

hν3

eβhν − 1dν (4.161)

=
x=βhν

2πk4
B

h3c2 T
4
∫ ∞

0

x3

ex − 1dx (4.162)

Recall that β = 1
kBT

.

2. By performing a series expansion, one easily eliminates division by zero. Indeed, near zero,

ex − 1 =
0
x+ o(x) =⇒ x3

ex − 1 =
0
x2 + o(x2) (4.163)

which converges well at zero. At infinity, the exponential ensures convergence of the inte-
gral. ∫

R+

x3

ex − 1dx =
∫
R+

dx x3e−x 1
1 − e−x (4.164)

=DSE

∫
R+

dx x3
∑
n∈N∗

e−nx (4.165)

=
u=nx

∑
n∈N∗

1
n4

∫
R+

du u3e−u (4.166)

= ζ(4)Γ(4) (4.167)
= 6ζ(4) (4.168)

3. Thanks to Fourier theory, one can show that ζ(4) = π4

90 . We then have,

I(T ) = 2π5k4
B

15h3c2T
4, (4.169)
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4.6.6 Application: Solar mass loss due to electromagnetic radiation

We consider the Sun as a black body at temperature T = 5775 K. The total power radiated by the
Sun is given by Stefan-Boltzmann law:

P = I · S = σT 4 · 4πR2, (4.170)

where
σ = 5,67 × 10−8 W.m−2K−4, R = 6,96 × 108 m (4.171)

is the radius of the Sun.

Let’s calculate P :
P = 5,67 × 10−8 × (5775)4 × 4π(6,96 × 108)2. (4.172)

We estimate:
(5775)4 ≃ 1,11 × 1015, (4.173)

4π(6,96 × 108)2 = 4π × 4,84 × 1017 ≃ 6,08 × 1018. (4.174)

Thus,
P ≃ 5,67 × 10−8 × 1,11 × 1015 × 6,08 × 1018 ≃ 3,83 × 1026 W. (4.175)

According to Einstein’s mass-energy equivalence relation,

E = mc2, (4.176)

the mass loss rate ṁ per unit time related to this radiated power is

ṁ = P

c2 , (4.177)

with c = 3,00 × 108 m/s.

Hence,
ṁ = 3,83 × 1026

(3,00 × 108)2 = 3,83 × 1026

9 × 1016 ≃ 4,26 × 109 kg/s. (4.178)

Knowing that the age of the Sun is about t = 4,6 × 109 years, i.e.

t = 4,6 × 109 × 3,15 × 107 ≃ 1,45 × 1017 s, (4.179)

the total lost mass is

∆m = ṁ× t = 4,26 × 109 × 1,45 × 1017 ≃ 6,18 × 1026 kg. (4.180)

In number of Earth masses, with mT = 6 × 1024 kg,

∆m
mT

= 6,18 × 1026

6 × 1024 ≃ 103. (4.181)

Thus, the Sun loses about 4,3 × 109 kg/s by radiation. Since its formation, it has lost about 100
times the mass of the Earth.
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4.7 Minimization of the gravitational potential by a ball

4.7.1 Hadamard’s formula

Let F : R3 → R be a C1 function, and let Ωε be a smooth deformation of Ω such that, for x ∈ ∂Ω,

x 7→ x+ ε f(x)n(x), (4.182)

extended on all Ω. We want to prove:

d
dε

∣∣∣∣
ε=0

∫
Ωε

F (x) d3x =
∫
∂Ω
F (x) f(x) dS(x), (4.183)

where dS is the surface element on ∂Ω.

1. Study of the function det : Mn(R) → R.

(a) Differentiability of det.
Recall that for M = (mij) ∈ Mn(R),

det(M) =
∑
σ∈Sn

sign(σ)
n∏
i=1

mi,σ(i). (4.184)

It is thus a polynomial in the n2 variables mij . Any polynomial function Rn2 → R is
of class C∞. In particular, det is differentiable at every point of Mn(R), notably near
the identity I .

(b) Expansion of det(I + εM).
We want to show:

∀M ∈ Mn(R), det
(
I + εM

)
=
ε→0

1 + ε Tr(M) + o(ε), (4.185)

which implies d
dε
∣∣
ε=0 det(I + εM) = Tr(M).

It suffices to write M in upper triangular form, then the determinant is the product of
the eigenvalues!
Thus,

det(I + εM) =
n∏
i=1

(1 + ελi) = 1 + ε

n∑
i=1

λi +O(ε2) = 1 + εTrM + o(ε) (4.186)

which concludes the proof.
(c) We reduce to the previous case by factoring out X .

det(X +H) = detX det
(
I +X−1H

)
(4.187)

= detX
(

1 + tr
(
X−1H

)
+ o(∥H∥)

)
(4.188)

= detX + tr
(
tCom(X)H

)
+ o(∥H∥) (4.189)

Thus we have,
d(det(H)) (X) = Tr

(
tCom(X)H

)
(4.190)
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2. Change of variables and calculation of the Jacobian.
We perform the change of variable

x = x(u) = u+ ε f(u)n(u), u ∈ Ω. (4.191)

To compute det
(
∂x
∂u

)
at first order in ε, we write

xi(u) = ui + ε f(u)ni(u), i = 1, . . . , n. (4.192)

Then
∂xi
∂uj

= δij + ε
(
∂jf(u)

)
ni(u) + ε f(u) ∂jni(u). (4.193)

Let the matrix A(u) =
(
∂jf ni + f ∂jni

)
i,j

. We have ∂x
∂u

= I + εA(u). By the previous
expansion,

det
(∂x
∂u

)
= det

(
I + εA(u)

)
= 1 + ε Tr

(
A(u)

)
+ o(ε). (4.194)

Noticing that Tr(A(u)) = ∇·
(
f n
)
, we obtain

det
(∂x
∂u

)
= 1 + ε∇·

(
f n
)
(u) + o(ε). (4.195)

3. Expansion of F (x+ ε v(x)).
Let F : Rn → R ∈ C1, v : Rn → Rn. Fixing x, define φ(ε) = F

(
x+ ε v(x)

)
. By the chain

rule in dimension 1,

φ′(ε) = d
dεF (x+ εv(x)) = v(x) · ∇F

(
x+ ε v(x)

)
. (4.196)

In particular, for ε → 0,

φ(ε) = φ(0) + εφ′(0) + o(ε) = F (x) + ε v(x) · ∇F (x) + o(ε). (4.197)

Hence
∀x ∈ Rn, F

(
x+ ε v(x)

)
= F (x) + ε v(x) · ∇F (x) + o(ε). (4.198)

4. Derivation of Hadamard’s formula.
We perform the change x(u) in

∫
Ωε

F (x) d3x. Then

∫
Ωε

F (x) d3x =
∫

Ω
F
(
x(u)

)
det
(∂x
∂u

)
d3u. (4.199)

From the two previous points,

F
(
x(u)

)
= F (u) + ε f(u)n(u) · ∇F (u) + o(ε), det

(
∂x
∂u

)
= 1 + ε∇·

(
f n
)
(u) + o(ε).

(4.200)
Multiplying,

F
(
x(u)

)
det
(∂x
∂u

)
= F (u) + ε

[
f n · ∇F + F ∇·(f n)

]
(u) + o(ε). (4.201)

Therefore,∫
Ωε

F (x) d3x =
∫

Ω
F (u) d3u+ ε

∫
Ω

[
f n · ∇F + F ∇·(f n)

]
(u) d3u+ o(ε). (4.202)
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Then,
d
dε

∣∣∣∣
ε=0

∫
Ωε

F (x) d3x =
∫

Ω
∇·
(
F f n

)
(u) d3u, (4.203)

using the product rule. Finally, by the divergence theorem,∫
Ω

∇·
(
F f n

)
d3u =

∫
∂Ω
F f n · ndS(u) =

∫
∂Ω
F f dS. (4.204)

This concludes the proof of Hadamard’s formula (3.48).

4.7.2 Connection with the gravitational potential

1. Sign of E[Ω] and definition of I[Ω].
We have

E[Ω] = −G

2 ρ2
∫∫

Ω×Ω

1
|x− x′|

d3x d3x′. (4.205)

Since G > 0 and ρ > 0, it immediately follows that E[Ω] < 0. Minimizing E[Ω] is therefore
equivalent to maximizing

I[Ω] :=
∫∫

Ω×Ω

1
|x− x′|

d3xd3x′. (4.206)

2. Calculation of the potential at the center of a ball.
Suppose Ω = B(0, R) with fixed volume 4

3πR
3 = V . The density is ρ. For x = 0,

U(0) = −Gρ
∫

Ω

1
|x′|

d3x′ = −Gρ
∫ R

0

∫
S2

1
r
r2 sin θ dθ dφdr. (4.207)

In spherical coordinates,∫
S2

sin θ dθ dφ = 4π, and
∫ R

0

r2

r
dr =

∫ R

0
r dr = R2

2 . (4.208)

Thus
U(0) = −Gρ · 4π · R

2

2 = −2πGρR2. (4.209)

Hence the explicit expression of the potential at the center.

4.7.3 The sphere?

1. First variation of F .
We write F [Ωε] and apply Hadamard’s formula with F (x) =

∫
Ω

1
|x−x′| d3x′. Then

δF = d
dε

∣∣∣∣
ε=0

∫∫
Ωε×Ωε

1
|x− y|

dx dy. (4.210)

Thus, using Hadamard’s formula for Ω2,

δF = 2
∫
∂Ω

(∫
Ω

1
|x− x′|

d3x′
)
f(x) dS(x). (4.211)
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2. Introduction of the Lagrange multiplier λ.
We want to minimize F under the constraintV [Ω] = V . We define the Lagrangian functional

L[Ω] := F [Ω] − λV [Ω], λ ∈ R. (4.212)

Its first variation writes

δL = δF − λ δV = 2
∫
∂Ω

(∫
Ω

1
|x− x′|

d3x′
)
f(x) dS(x) − λ

∫
∂Ω
f(x) dS(x). (4.213)

By linearity,
δL =

∫
∂Ω

(
2
∫

Ω

1
|x− x′|

d3x′ − λ
)
f(x) dS(x). (4.214)

3. Stationary condition for the ball.
For δL = 0 for all perturbations f , it is necessary and sufficient that

2
∫

Ω

1
|x− x′|

d3x′ − λ = 0, for all x ∈ ∂Ω. (4.215)

In other words, the function x 7→
∫

Ω

1
|x− x′|

d3x′ is constant on ∂Ω.

If Ω = B(0, R) is a ball, then by spherical symmetry, for every x ∈ ∂B(0, R) (i.e. |x| = R),
the integral

∫
B(0,R)

1
|x− x′|

d3x′ depends only on |x| = R.

Thus it is constant on ∂B. We deduce that the ball satisfies the stationary condition δL = 0
for all f .

4. (Bonus) Second variation and local minimum.
To show that the ball is a local minimum of F under volume constraint V , one must verify
that the second variation δ2L[f ] is strictly positive for any perturbation f ̸= 0 satisfying∫
∂Ω f dS = 0.

Without full details here, the second variation can be written as a bilinear form:

δ2F [f ] =
∫

(∂Ω)2
K(x, x′) f(x) f(x′) dS(x) dS(x′) +

∫
∂Ω
f(x)2κ(x)dS(x), (4.216)

with kernel K(x, x′) = 1
|x−x′| and κ(x) the mean curvature at x.

For the ball, thanks to the spherical harmonics expansion, one shows this form is strictly
positive on

{
f |
∫
∂Ω f dS = 0

}
. This proves the ball is a local minimum.

5. Physical conclusion.
The ball minimizes the internal gravitational energy for a fixed volume. In physics, this
explains that in the approximation of a massive self-gravitating body at rest, the stationary
configuration of least energy is spherical. This is why large objects in the Universe (stars,
planets in the absence of tidal forces or rapid rotation) tend to a spherical shape.
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4.8 Relativistic motion of a charged particle

4.8.1 Relativistic Lagrangian of a Charged Particle in an Electromagnetic
Field

1. Free particle and relativistic action.
The principle of least action requires that the action be a Lorentz scalar. The simplest scalar
is the spacetime interval ds, defined by:

ds2 = c2dt2 − dx2 = ηµνdxµdxν . (4.217)

The action for a free particle of mass m is thus:

S = −mc
∫

ds = −mc2
∫ √

1 − v2

c2 dt. (4.218)

The associated Lagrangian is:

L = −mc2

√
1 − v2

c2 . (4.219)

2. Interaction with an electromagnetic field.
We introduce the four-potential Aµ = (ϕ/c,A). We seek an interaction term of the scalar
form Lint = qAµẋ

µ. In standard coordinates:

Lint = qA · v − qϕ. (4.220)

The total Lagrangian is therefore:

Ltot = −mc2

√
1 − v2

c2 + qA · v − qϕ. (4.221)

3. Generalized momentum.
The generalized momentum is defined as:

p = ∂Ltot

∂v
= mv√

1 − v2

c2

+ qA = γmv + qA. (4.222)

4. Euler–Lagrange equations.
Applying the Euler–Lagrange equations:

d
dt

(
∂L
∂v

)
= ∂L
∂x

. (4.223)

The left-hand side becomes:
d
dt (γmv) + q

dA
dt . (4.224)

The right-hand side yields:
q∇(A · v) − q∇ϕ. (4.225)

Using:
∇(A · v) = (v · ∇)A + v × (∇ × A), (4.226)

and:
dA
dt = ∂tA + (v · ∇)A, (4.227)
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we find that the (v · ∇)A terms cancel out, giving:

d
dt (γmv) = q [−∂tA − ∇ϕ+ v × (∇ × A)] . (4.228)

Recognizing the electric and magnetic fields:

E = −∇ϕ− ∂tA, B = ∇ × A, (4.229)

we obtain the Lorentz force law:

d
dt (γmv) = q(E + v × B). (4.230)

5. Covariant formulation.
We parameterize the worldline using the proper time τ :

L = −mc
√

−gµν ẋµẋν + qAµẋ
µ, (4.231)

where the first term represents the free particle, and the second the interaction.

6. Equation of motion.
Applying the Euler–Lagrange equations in covariant form, we use the Lagrangian:

L = −mc
√

−ẋµẋµ + qAµẋ
µ, (4.232)

with ẋµ = dxµ/dτ . Since ẋµẋµ = −c2, we get:

∂L
∂ẋµ

= mc
ẋµ
c

+ qAµ. (4.233)

Differentiating:

d
dτ

(
∂L
∂ẋµ

)
= mẍµ + qẋν∂νAµ, (4.234)

∂L
∂xµ

= q∂µAν ẋ
ν , (4.235)

yielding the equation of motion:

mẍµ + qẋν∂νAµ = qẋν∂µAν , (4.236)
mẍµ = qẋν(∂µAν − ∂νAµ), (4.237)
mẍµ = qFµν ẋ

ν , (4.238)

where the antisymmetric electromagnetic tensor is:

Fµν = ∂µAν − ∂νAµ. (4.239)

7. Components of the tensor Fµν .
Fµν is antisymmetric and encodes the electric and magnetic fields. In Cartesian coordinates
with Aµ = (ϕ/c,A) and xµ = (ct,x):

• For µ = 0, ν = i:

F0i = 1
c

∂Ai
∂t

− 1
c

∂ϕ

∂xi
= −1

c
Ei. (4.240)
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• For µ = i, ν = j:

Fij = ∂iAj − ∂jAi = −εijkBk. (4.241)

Conclusion: the tensor Fµν is:

Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2
E2/c B3 0 −B1
E3/c −B2 B1 0

 (4.242)

This explicitly shows how Fµν encodes E and B in an inertial frame.

8. Relativistic invariants.
We compute:

I1 = FµνF
µν = 2(B2 − E2

c2 ),

I2 = εµνρσFµνFρσ = −8
c

E · B.

Characteristic cases:

• E2 = c2B2 and E · B = 0: electromagnetic plane wave.
• I1 > 0: magnetic-field dominated; I1 < 0: electric-field dominated.

9. Gauge transformation.
Under Aµ → Aµ + ∂µΛ, we have:

Fµν → Fµν , (4.243)

since mixed partial derivatives cancel. This leaves the equations of motion invariant: a local
gauge symmetry associated with charge conservation via Noether’s theorem.

4.8.2 Equations of Motion of a Charged Particle in a Plane Electromag-
netic Wave – Solution

We consider a particle of mass m and charge q subjected to an electromagnetic field. Its motion is
governed by the equation:

mẍµ = qFµν ẋν , (4.244)

where the dots denote derivatives with respect to the proper time τ , and we work in natural units:
c = 1.

The potential is given by:

Aµ(x) = aµf(kνxν), (4.245)

where aµ is a constant four-vector, f ∈ C1, and kµ is a lightlike four-vector satisfying kµkµ = 0.

1. Computation of the Electromagnetic Tensor.

By definition:
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Fµν = ∂µAν − ∂νAµ. (4.246)

We compute:

∂µAν = aνf ′(k · x)kµ, ∂νAµ = aµf ′(k · x)kν , (4.247)

so that:

Fµν = (kµaν − kνaµ) f ′(k · x). (4.248)

2. Gauge Condition.

(a) We compute the Lorenz gauge condition:

∂µA
µ = aµf ′(k · x)kµ. (4.249)

(b) Hence, the Lorenz condition ∂µAµ = 0 implies:

aµkµ = 0, (4.250)

i.e., the polarization vector is orthogonal to the wave vector. This expresses the transver-
sality of the electromagnetic wave.

3. Equation of Motion.

(a) Using the expression of Fµν :

Fµν ẋν = [kµ(a · ẋ) − aµ(k · ẋ)] f ′(k · x). (4.251)

(b) The equation becomes:

mẍµ = q [kµ(a · ẋ) − aµ(k · ẋ)] f ′(k · x). (4.252)

4. Integration of the Equation of Motion.

(a) Define ϕ(τ) = k · x(τ), then:

dϕ
dτ = k · ẋ, d2ϕ

dτ2 = k · ẍ. (4.253)

Using the motion equation and the identities k2 = 0, k · a = 0:

d2ϕ

dτ2 = 0 ⇒ ϕ(τ) = ωτ + ϕ0, (4.254)

with ω = k · ẋ = constant.
(b) Let uµ = ẋµ and define α(ϕ) = a · u(ϕ). Then:

mω
duµ

dϕ = q [kµα(ϕ) − aµω] f ′(ϕ). (4.255)
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(c) Projecting on aµ and using a · k = 0:

dα
dϕ = − qa2

mω
f ′(ϕ), ⇒ α(ϕ) = α0 − qa2

mω
f(ϕ). (4.256)

(d) Substituting into the equation:
duµ

dϕ = q

mω
[kµα(ϕ) − aµω] f ′(ϕ). (4.257)

(e) Integration yields:

uµ(ϕ) = uµ(ϕ0) + q

mω

[
kµ
∫ ϕ

ϕ0

α(φ)f ′(φ)dφ− aµω

∫ ϕ

ϕ0

f ′(φ)dφ
]

(4.258)

= uµ(ϕ0) + q

mω
kµ
[
α0∆f − qa2

2mω∆(f2)
]

− q

m
aµ∆f, (4.259)

where ∆f = f(ϕ) − f(ϕ0), and ∆(f2) = f(ϕ)2 − f(ϕ0)2.
(f) The trajectory is obtained by integrating once more:

xµ(ϕ) = xµ(ϕ0) + 1
ω

∫ ϕ

ϕ0

uµ(φ)dφ. (4.260)

Summary:

uµ(ϕ) = uµ(ϕ0) + q

mω
kµ
[
α0∆f − qa2

2mω∆(f2)
]

− q

m
aµ∆f,

xµ(ϕ) = xµ(ϕ0) + 1
ω

∫ ϕ

ϕ0

uµ(φ) dφ.
(4.261)

5. Example: Sinusoidal Wave.
Let

f(ϕ) = sin(ϕ), ⇒
∫

sin(ϕ)dϕ = − cos(ϕ),
∫

sin2(ϕ)dϕ = ϕ

2 − sin(2ϕ)
4 . (4.262)

The velocity becomes:

uµ(ϕ) = uµ(ϕ0) + q

mω
kµ
[
α0(sinϕ− sinϕ0) − qa2

2mω

(
ϕ− ϕ0

2 − sin 2ϕ− sin 2ϕ0

4

)]
− q

m
aµ(sinϕ− sinϕ0). (4.263)

The integrated trajectory components are:

ct(τ) = ct0 + u0(τ0)
ω

∆ϕ + q

mω2 k0
[

α0∆(− cos ϕ) − qa2

4mω

(
∆ϕ − ∆(sin 2ϕ)

2

)]
− q

mω
a0∆(− cos ϕ),

(4.264)

xi(τ) = xi(τ0) + ui(τ0)
ω

∆ϕ + q

mω2 ki

[
α0∆(− cos ϕ) − qa2

4mω

(
∆ϕ − ∆(sin 2ϕ)

2

)]
− q

mω
ai∆(− cos ϕ),

(4.265)

where
ϕ = ωτ + ϕ0, α0 = aµu

µ(τ0), a2 = aµa
µ. (4.266)

This expression gives the full analytic trajectory of a charged particle in a monochromatic
sinusoidal plane electromagnetic wave.
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4.8.3 Field Theory

1. For an action depending on a field φ (scalar, tensor, etc.):

S =
∫

Ω
L(φ, ∂µφ, xµ) d4x (4.267)

We consider a variation φ 7→ φ+εη with η ∈ C1
c (Ω) (compactly supported and continuously

differentiable). Then:

δS = dS
dε [φ+ εη]

∣∣∣∣
ε=0

(4.268)

=
∫

Ω

(
∂L
∂φ

η + ∂L
∂(∂µφ)∂µη

)
d4x (4.269)

We integrate by parts the term ∂L
∂(∂µφ)∂µη:

u = ∂L
∂(∂µφ) ⇒ du = ∂µ

( ∂L
∂(∂µφ)

)
, dv = ∂µη ⇒ v = η (4.270)

We obtain:
δS =

∫
Ω

(
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

))
η d4x (4.271)

Since η vanishes on the boundary ∂Ω, we obtain the Euler-Lagrange equation for fields:

∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (4.272)

2. We consider the electromagnetic action:

L = − 1
4µ0

FµνFµν −Aµjµ (4.273)

We want to calculate:
∂L

∂(∂µAν) . (4.274)

We start by using the chain rule:

∂L
∂(∂µAν) = −1

4

(
∂Fρσ

∂(∂µAν)F
ρσ + Fρσ

∂F ρσ

∂(∂µAν)

)
. (4.275)

Now, by differentiating the tensor Fρσ :
∂Fρσ

∂(∂µAν) = δµρ δ
ν
σ − δµσδ

ν
ρ , (4.276)

and similarly:
∂F ρσ

∂(∂µAν) = δµρ δ
ν
σ − δµσδ

ν
ρ , (4.277)

thus:
∂L

∂(∂µAν) = −1
4
[(
δµρ δ

ν
σ − δµσδ

ν
ρ

)
F ρσ + Fρσ

(
δµρ δ

ν
σ − δµσδ

ν
ρ

)]
(4.278)

= −1
2
(
δµρ δ

ν
σ − δµσδ

ν
ρ

)
F ρσ (4.279)

= −1
2(Fµν − F νµ) (4.280)

= −Fµν (since F νµ = −Fµν). (4.281)
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∂L
∂(∂µAν) = −Fµν (4.282)

Moreover,
∂L
∂Aµ

= −jµ (4.283)

Therefore, by the Euler-Lagrange equation,

∂µF
µν = µ0j

ν (4.284)

The homogeneous equations are obtained by noting that Fµν = ∂µAν − ∂νAµ implies by
construction2:

∂λFµν + ∂µFνλ + ∂νFλµ = 0 (4.285)

4.8.4 Trajectory of a Charged Particle in a Constant Magnetic Field

1. The field tensor Fµν : in the reference frame where E = 0 and B = Bez , we have:

Fµν =


0 0 0 0
0 0 −B 0
0 B 0 0
0 0 0 0

 (4.286)

2. The equation of motion duµ/dτ = (q/m)Fµνuν implies u3 = constant = 0, hence planar
motion. The energy E = γmc2 is conserved since F 0ν = 0.

3. The equation duµ/dτ = (q/m)Fµνuν gives:

du1

dτ = (q/m)F 12u2 = −(qB/m)u2, (4.287)

du2

dτ = (q/m)F 21u1 = (qB/m)u1. (4.288)

This describes uniform circular motion, thus:

ω = qB

m
, x(t) = R cos

(
ω

γ
t

)
, y(t) = R sin

(
ω

γ
t

)
, (4.289)

with γ constant, implying τ = t/γ, and:

R = γmv

qB
. (4.290)

4. Starting from:

P = −dE
dt = q2

6πε0c3 γ
4a2, E = γmc2, a = v2

R
, (4.291)

we obtain:
dγ
dt = − q2

6πε0c5m
γ3a2 = −C(γ2 − 1), (4.292)

with:
C = q4B2

6πε0c5m3 . (4.293)
2Simply differentiate each term, then substitute; everything cancels out.
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5. Solving:
dγ

γ2 − 1 = −Cdt ⇒ 1
2 ln

∣∣∣∣γ − 1
γ + 1

∣∣∣∣ = −Ct+ C0, (4.294)

we find:
γ(t) = coth(Ct+ C0) . (4.295)

6. Using ω = qB
m and v(t) = c

√
1 − 1/γ(t)2, we obtain:

R(t) = γ(t)mv(t)
qB

, θ(t) =
∫ t

0

ω

γ(s) ds, (4.296)

and then:

x(t) = R(t) cos θ(t), (4.297)
y(t) = R(t) sin θ(t). (4.298)

7. The trajectory spirals toward the origin since R(t) → 0 and ω/γ(t) → 0, although oscilla-
tions persist. Numerically, this leads to error accumulation, requiring adaptive time steps to
resolve the fast oscillations at early times.

4.8.5 Relativistic Collider Physics

We work in natural units, with c = 1.

1. The square of the total energy-momentum invariant is defined as:

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1 · p2. (4.299)

In the center-of-mass frame (CMS), the total available energy is:

E(CMS)
tot =

√
s. (4.300)

2. For a head-on collision of two identical particles of mass m and energy E each (in the labo-
ratory frame), the four-momenta are:

p1 = (E,p), (4.301)
p2 = (E,−p), (4.302)

which gives:
s = (p1 + p2)2 = 2m2 + 2(E2 − p2) = 4E2, (4.303)

using E2 − p2 = m2 and E ≫ m. Therefore:
√
s = 2E . (4.304)

3. For a fixed-target collision:

p1 = (Elab,p), (4.305)
p2 = (m, 0), (4.306)

then:
s = (p1 + p2)2 = m2 +m2 + 2mElab = 2m2 + 2mElab, (4.307)
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hence:
s = 2m2 + 2mElab . (4.308)

At the threshold for producing two new particles of mass m, we set
√
s = 2m, yielding:

2m =
√

2m2 + 2mElab ⇒ Elab = 2m. (4.309)

4. To produce a single particle of mass M at threshold in a fixed-target experiment:

s = M2 = m2 +m2 + 2mElab ⇒ Elab = M2 − 2m2

2m . (4.310)

In contrast, in a symmetric collider:

ECM =
√
s = 2E = 2M ⇒ E = M. (4.311)

Thus, for the same center-of-mass energy, the required lab-frame energy is much larger in
a fixed-target setup than in a symmetric collider. This is why head-on colliders are more
efficient for producing heavy particles at high energy.
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4.9 Relativistic hydrodynamics

4.9.1 Classical Hydrodynamics

1. Consider a fluid region of fixed and closed volume V . The total mass is

M(t) =
∫
V

ρ(x, t) dV. (4.312)

Mass conservation implies that the time variation of this mass is compensated by the mass
flux leaving through the boundary ∂V :

dM
dt = −

∫
∂V

ρv · n dS, (4.313)

where n is the outward normal vector of the surface.
By the divergence theorem (Gauss), this can be written as

d
dt

∫
V

ρ dV = −
∫
V

∇ · (ρv) dV. (4.314)

Since V is fixed, one can interchange the time derivative and the integral:∫
V

∂ρ

∂t
dV = −

∫
V

∇ · (ρv) dV. (4.315)

By arbitrariness of the volume V , we obtain the local equation

∂ρ

∂t
+ ∇ · (ρv) = 0. (4.316)

If the fluid is incompressible, the mass density is constant and independent of t and x: ρ = ρ0.
Then,

∂ρ

∂t
= 0, ∇ρ = 0, (4.317)

and (4.316) becomes
0 + ρ0∇ · v = 0 =⇒ ∇ · v = 0. (4.318)

So for an incompressible fluid, the velocity field is divergence-free.

2. We start from Newton’s second law applied to an elementary fluid particle of mass density
ρ.
The left-hand side of the equation is the total acceleration multiplied by the mass density:

ρ
Dv

Dt
= ρ

(
∂v

∂t
+ (v · ∇)v

)
, (4.319)

where D
Dt is the material derivative (following the particle).

On the right-hand side, we have volumetric forces:
- Force due to pressure gradient, which pushes the fluid from high pressure regions to low
pressure: −∇p.
- Volumetric gravitational force: ρg.
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The dynamic equilibrium writes as

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ ρg. (4.320)

Physical meaning: - ρ∂v
∂t : local variation of velocity, - ρ(v ·∇)v: spatial variation linked to

transport by fluid motion, - −∇p: internal force related to pressure gradients, - ρg: external
gravitational force.

3. Viscous forces correspond to dissipative effects linked to fluid deformations. These forces
are modeled by terms proportional to second derivatives of velocity components.
The viscous stress tensor, in a Newtonian fluid, is proportional to the strain rate tensor. The
volumetric contribution of the viscous force is

f visc = η∇2v +
(
ζ + η

3

)
∇(∇ · v), (4.321)

where η is the dynamic (shear) viscosity and ζ the bulk (volume) viscosity.
Thus, the complete equation becomes

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ η∇2v +

(
ζ + η

3

)
∇(∇ · v) + ρg. (4.322)

Role of viscous terms:

- η∇2v tends to smooth velocity gradients (momentum diffusion).
-
(
ζ + η

3
)

∇(∇ · v) acts when the fluid is compressible, dissipating energy related to com-
pression or dilation.

4. In the Lagrangian description, one follows the trajectory X(t) of an individual fluid particle.
The total time derivative is then the derivative following this particle:

d
dt = ∂

∂t
+ dX

dt · ∇ = ∂

∂t
+ v · ∇, (4.323)

since dX
dt = v(X, t).

This formula defines the material or substantial derivative in the Eulerian description.
The Eulerian description analyzes the fields v(x, t) at each fixed point in space, without
following individual particle trajectories.

5. Consider a streamline parameterized by s 7→ r(s) at fixed time t. The condition that the
tangent is colinear to the velocity field writes

dr

ds = α(s)v(r(s), t), (4.324)

with α(s) a positive function.
Choosing the parameter s such that α(s) = 1 (arclength parameterization or other), then

dr

ds = v(r(s), t). (4.325)

Thus, streamlines are integral trajectories of the field v at instant t.
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6. For a perfect, incompressible, stationary, and non-viscous fluid subject to a conservative force
field with potential Φ, we start from the stationary Euler equation

ρ(v · ∇)v = −∇p+ ρ∇Φ. (4.326)

We use the vector identity

(v · ∇)v = ∇
(
v2

2

)
− v × (∇ × v). (4.327)

For an irrotational fluid (without vortices), ∇ × v = 0, so

ρ∇
(
v2

2

)
= −∇p+ ρ∇Φ. (4.328)

Rearranging:

∇
(

1
2ρv

2 + p+ ρΦ
)

= 0. (4.329)

Thus, the quantity inside the parentheses is constant along a streamline:

1
2ρv

2 + p+ ρΦ = constant. (4.330)

This is Bernoulli’s theorem.

4.9.2 Introduction to Relativistic Hydrodynamics

1. The energy-momentum tensor of a perfect fluid is written as

Tµν = (ε+ p)uµuν − p gµν , (4.331)

where ε is the rest-frame energy density of the fluid, p the pressure, uµ the four-velocity
of the fluid (normalized by uµuµ = −1), and gµν the Minkowski metric with signature
(− + ++).

(a) Symmetry of Tµν

The terms are built from symmetric products: - uµuν is manifestly symmetric under
µ ↔ ν. - gµν is symmetric.
Therefore, Tµν = T νµ.

(b) Calculation in the rest frame
In the fluid rest frame, the four-velocity is

uµ = (1, 0, 0, 0). (4.332)

The energy-momentum tensor here, with signature (− + ++),

Tµν = (ε+ p)uµuν + pgµν , (4.333)

with
gµν = diag(−1,+1,+1,+1). (4.334)
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Let us compute the component T 00 explicitly:

T 00 = (ε+ p)u0u0 + pg00 (4.335)
= (ε+ p) × 1 × 1 + p× (−1) (4.336)
= ε+ p− p = ε. (4.337)

Similarly, for spatial components i, j = 1, 2, 3:

T ij = (ε+ p)uiuj + pgij (4.338)
= 0 + pδij = pδij . (4.339)

Finally, for mixed components T 0i:

T 0i = (ε+ p)u0ui + pg0i = 0, (4.340)

since ui = 0 and g0i = 0.
(c) Physical interpretation

• T 00 = ε represents the total energy density in the fluid.
• T 0i = 0 means there is no energy flux in the rest frame (fluid at rest).
• T ij = pδij is the spatial stress tensor, here isotropic and equal to pressure p on

the diagonal.

(d) Calculation of the trace
The trace of the tensor is obtained by contracting with the metric,

Tµµ = gµνT
µν = gµν [(ε+ p)uµuν + pgµν ] . (4.341)

This can be written as

Tµµ = (ε+ p)gµνuµuν + p gµνg
µν . (4.342)

Recall that
gµνu

µuν = uνu
ν = −1, (4.343)

and that the contraction of the metric with itself is

gµνg
µν = Tr(δµν ) = 4. (4.344)

Substituting, we obtain

Tµµ = (ε+ p)(−1) + p× 4 (4.345)
= −ε− p+ 4p (4.346)
= −ε+ 3p. (4.347)

(e) Equation of state for an ultra-relativistic gas
Recall that the energy density and pressure are expressed in statistical physics (within
a volume V ) by

ε = 1
V

∫ d3∥p∥
(2π)3 E(p)f(p), (4.348)

p = 1
3V

∫ d3∥p∥
(2π)3

∥p∥2

E(p)f(p), (4.349)
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where f(p) is the distribution function.
In the ultra-relativistic regime, we consider particles that are almost massless, so

E(p) =
√

∥p∥2 +m2 ≃ ∥p∥. (4.350)

Substituting this approximation into equation (4.349):

p = 1
3V

∫ d3∥p∥
(2π)3

∥p∥2

∥p∥
f(p) = 1

3V

∫ d3∥p∥
(2π)3 ∥p∥f(p). (4.351)

Now compare to the definition (4.348):

ε = 1
V

∫ d3∥p∥
(2π)3 ∥p∥f(p). (4.352)

We clearly see that
p = ε

3 . (4.353)

Consequence on the trace:
Replacing in the previously calculated trace,

Tµµ = −ε+ 3p = −ε+ 3 × ε

3 = 0. (4.354)

This vanishing of the trace characterizes a conformal ultra-relativistic fluid.

2. The local conservation of the energy-momentum tensor reads

∂µT
µν = 0, (4.355)

which represents four scalar equations expressing energy conservation (component ν = 0)
and momentum conservation (ν = 1, 2, 3).

(a) The dynamic unknowns are the field variables describing the fluid state: the four-
velocity uµ (subject to the constraint uµuµ = −1) and scalar thermodynamic variables
such as the energy density ε, the pressure p (or temperature T ).

(b) The system is not closed because there are more unknowns than equations. To solve
it, an additional relation (equation of state) linking ε, p, and possibly T is needed. This
relation stems from the microscopic physics or thermodynamics of the fluid.

3. At the local scale, classical thermodynamics can be applied to a comoving fluid element of
infinitesimal volume dV .
We introduce the corresponding extensive densities:

ε = U

V
, s = S

V
, n = N

V
. (4.356)

Within this framework, the first law of thermodynamics reads (in natural units, c = 1):

dε = T ds+ µdn. (4.357)

We suppose, at first, that µ = 0, i.e. that there is no particle number conservation (which is
often a good approximation in a relativistic plasma where particles are created and annihi-
lated).
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Recall that the internal energy U(S, V ) is a homogeneous function of degree 1 in S and V
(extensive variables). According to Euler’s theorem for homogeneous functions:

U = TS − pV. (4.358)

Dividing this relation by the volume V gives a relation between densities:

U

V
= T

S

V
− p ⇒ ε = Ts− p. (4.359)

One thus obtains the Euler relation for a relativistic fluid without chemical potential:

ε+ p = Ts. (4.360)

4. The speed of sound is defined by

c2
s =

(
∂p

∂ε

)
s

. (4.361)

For an ultra-relativistic fluid where
p = ε

3 , (4.362)

we immediately get
c2
s = 1

3 . (4.363)

Compared to the speed of light c = 1, we have

cs = 1√
3

≃ 0.577, (4.364)

which is consistent since the speed of sound must be less than the speed of light.

4.9.3 Relativistic equation of motion

1. The conservation of the total particle number N in a relativistic fluid is globally written as
the integral

N =
∫

Σ
jµ dΣµ, (4.365)

where jµ = nuµ is the particle current, with n the particle density in the comoving frame
and uµ the four-velocity of the fluid. Σ is a spacelike hypersurface oriented towards the
future.

Local conservation is expressed by the condition that the integral is independent of the choice
of Σ, which implies the local conservation law:

∂µj
µ = 0. (4.366)

This equation is explicitly written as

∂µ(nuµ) = 0, (4.367)

which is the covariant form of relativistic continuity.
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Quick proof:

Let Στ be a hypersurface of constant time τ . For

dN
dτ = 0, (4.368)

the local divergence of the current must vanish.

2. Starting from the conservation of the energy-momentum tensor,

∂µT
µν = 0, (4.369)

with
Tµν = (ε+ p)uµuν + pgµν . (4.370)

We want to obtain the relativistic equation of motion (relativistic Euler equation).

Developing:
∂µT

µν = ∂µ [(ε+ p)uµuν ] + ∂µ (pgµν) = 0. (4.371)

Since gµν is constant in flat spacetime,

∂µ(pgµν) = gµν∂µp = ∂νp, (4.372)

because gµν raises indices.
Therefore,

∂µ [(ε+ p)uµuν ] + ∂νp = 0. (4.373)

Applying the product rule to the first term:

uν∂µ[(ε+ p)uµ] + (ε+ p)uµ∂µuν + ∂νp = 0. (4.374)

Projecting this equation onto uν gives an important relation.

Contract with uν :
uν∂µ [(ε+ p)uµuν ] + uν∂

νp = 0. (4.375)

The first term becomes

uν∂µ[(ε+ p)uµuν ] = ∂µ[(ε+ p)uµ(uνuν)] − (ε+ p)uµuν∂µuν . (4.376)

Recall that
uνu

ν = −1, (4.377)

which is constant.
Thus,

∂µ[(ε+ p)uµ(uνuν)] = ∂µ[−(ε+ p)uµ] = −∂µ[(ε+ p)uµ]. (4.378)

Therefore,
−∂µ[(ε+ p)uµ] − (ε+ p)uµuν∂µuν + uν∂

νp = 0. (4.379)

But the term uµuν∂µu
ν can be shown to vanish because

uν∂µu
ν = 1

2∂µ(uνuν) = 1
2∂µ(−1) = 0. (4.380)
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Hence,
−∂µ[(ε+ p)uµ] + uν∂

νp = 0, (4.381)

or equivalently,
∂µ[(ε+ p)uµ] = uν∂νp. (4.382)

Returning to the original equation and projecting orthogonally to uν using the projector

∆µν = gµν + uµuν , (4.383)

we get the relativistic Euler equation:

(ε+ p)uµ∂µuν + ∆νµ∂µp = 0. (4.384)

Interpretation: The first term represents the relativistic inertia of the fluid, the second the
pressure gradient projected perpendicular to the four-velocity.

4.9.4 Application to heavy-ion collisions

1. Bjorken coordinates are defined by

τ =
√
t2 − z2, η = 1

2 ln t+ z

t− z
. (4.385)

Calculate the invariant interval element ds2 = −dt2 + dx2 + dy2 + dz2 as a function of τ
and η.

We have
t = τ cosh η, z = τ sinh η. (4.386)

Differentiating,
dt = cosh η dτ + τ sinh η dη, (4.387)

dz = sinh η dτ + τ cosh η dη. (4.388)

Calculate −dt2 + dz2:

−dt2 + dz2 = −(cosh η dτ + τ sinh η dη)2 + (sinh η dτ + τ cosh η dη)2. (4.389)

Expanding,

= − cosh2 η dτ2 − 2τ cosh η sinh η dτdη − τ2 sinh2 η dη2 (4.390)
+ sinh2 η dτ2 + 2τ sinh η cosh η dτdη + τ2 cosh2 η dη2. (4.391)

The mixed terms dτdη cancel, and using cosh2 η − sinh2 η = 1, we get

−dt2 + dz2 = −dτ2 + τ2dη2. (4.392)

Therefore, the interval becomes

ds2 = −dτ2 + τ2dη2 + dx2 + dy2, (4.393)

and the metric gµν in the (τ, x, y, η) basis is

gµν = diag(−1, 1, 1, τ2). (4.394)
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2. In a boost-invariant fluid along z, one works in this curvilinear framework where the metric
depends on τ . The conservation of the energy-momentum tensor becomes the covariant
conservation

∇µT
µν = ∂µT

µν + ΓµµλT
λν + ΓνµλTµλ = 0. (4.395)

The Christoffel symbols are defined by

Γλµν = 1
2g

λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (4.396)

In our metric, the only nonzero symbols are

Γτηη = τ, Γητη = Γηητ = 1
τ
. (4.397)

Consider the ν = τ component of the conservation, since the energy evolution is related to
this component.
Write

∇µT
µτ = 0. (4.398)

Assuming a perfect fluid with transverse isotropy and boost invariance, and quantities de-
pending only on τ , the equation reduces to

dε
dτ + ε+ p

τ
= 0. (4.399)

Proof:

This expression comes from expanding ∇µT
µτ , taking into account the dependence of Tµν

components and the nonzero Christoffel symbols. The term ε+p
τ corresponds to the geomet-

ric divergence linked to the longitudinal expansion in τ .

3. For p = ε/3, the equation
dε
dτ + 4

3
ε

τ
= 0 (4.400)

is an ordinary differential equation.

It is solved by separation of variables:

dε
ε

= −4
3

dτ
τ

=⇒ ln ε = −4
3 ln τ + const. (4.401)

Hence,
ε(τ) ∝ τ− 4

3 . (4.402)

Using the equation of state ε ∝ T 4, one obtains

T (τ) ∝ τ− 1
3 . (4.403)

4. The equation of state modeled during the quark-gluon plasma (QGP) → hadrons transition
is

p = ε− 4B
3 , (4.404)

where B is the bag constant.
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At the transition, the pressure vanishes, so p = 0, which implies

0 = ε− 4B
3 =⇒ ε = 4B. (4.405)

Assuming the relation ε = aT 4, the critical temperature Tc is obtained by

aT 4
c = 4B =⇒ Tc =

(
4B
a

)1/4
. (4.406)

5. A nucleus modeled as a sphere of radius R has an approximate geometric cross section

σ ≃ π(2R)2 = 4πR2. (4.407)

This cross section represents the effective transverse area for two nuclei to collide.

A central collision corresponds to an impact parameter b ≃ 0 (the nuclei fully overlap),
whereas a peripheral collision corresponds to b ∼ 2R (only part of the nuclei overlap).

6. The initial volumetric energy density ε0 depends on the degree of overlap of the nuclei; it is
maximal in a central collision because the deposited energy density is higher.

Assuming
ε = aT 4, (4.408)

where a is the Stefan-Boltzmann constant (specific to the quark-gluon plasma),

T0 =
(ε0

a

)1/4
. (4.409)

For ε0 ∼ 10 GeV/fm3, and taking a adapted to the QGP, one can estimate the initial tem-
perature reached in RHIC collisions.
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4.10 Hydrogen atom and radial equation

4.10.1 Separation of variables and radial equation

1. Separation of variables

The Hamiltonian of the hydrogen atom, in the spherical basis, is written as:

H = − ℏ2

2me
∇2 − e2

r
. (4.410)

In spherical coordinates, the Laplacian is

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
− L2

ℏ2r2 , (4.411)

where L2 is the square of the orbital angular momentum.
We look for a solution of the form

ψ(r, θ, ϕ) = R(r)Yℓm(θ, ϕ), (4.412)

where Yℓm are the spherical harmonics simultaneous eigenfunctions of L2 and Lz , satisfying

L2Yℓm = ℏ2ℓ(ℓ+ 1)Yℓm, LzYℓm = ℏmYℓm. (4.413)

Injecting into the stationary Schrödinger equation Hψ = Eψ, we get the following radial
equation:

− ℏ2

2me

[
1
r2

d
dr

(
r2 dR

dr

)
− ℓ(ℓ+ 1)

r2 R

]
− e2

r
R = ER. (4.414)

Expanding the radial derivative,

1
r2

d
dr

(
r2 dR

dr

)
= d2R

dr2 + 2
r

dR
dr , (4.415)

which gives the announced equation:

− ℏ2

2me

(
d2R

dr2 + 2
r

dR
dr − ℓ(ℓ+ 1)

r2 R

)
− e2

r
R = ER. (4.416)

2. Change of function: u(r) = rR(r)
Putting u(r) = rR(r), we calculate:

dR
dr = 1

r

du
dr − u

r2 , (4.417)

d2R

dr2 = 1
r

d2u

dr2 − 2
r2

du
dr + 2u

r3 . (4.418)

Replacing in the radial equation, the terms in u/r3 cancel and we get:

− ℏ2

2me

d2u

dr2 +
[
ℏ2ℓ(ℓ+ 1)

2mer2 − e2

r

]
u = Eu. (4.419)
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3. Dimensionless change of variable

We define

κ =
√

2me|E|
ℏ2 , ρ = κr. (4.420)

The equation becomes

− ℏ2

2me
κ2 d2u

dρ2 +
[
ℏ2ℓ(ℓ+ 1)

2mer2 − e2

r

]
u = Eu. (4.421)

Since E = −|E|, dividing the whole equation by −ℏ2κ2

2me
:

d2u

dρ2 =
[
ℓ(ℓ+ 1)
ρ2 − 2mee

2

ℏ2κ

1
ρ

+ 1
]
u. (4.422)

We then set
ρ0 = mee

2

ℏ2κ
. (4.423)

This gives the announced equation:

d2u

dρ2 =
[
ℓ(ℓ+ 1)
ρ2 − ρ0

ρ
+ 1
]
u. (4.424)

4. Ansatz on the form of u(ρ)
We set

u(ρ) = ρℓ+1e−ρ/2v(ρ). (4.425)

By calculating the second derivative of u(ρ) and replacing into the differential equation, one
finds that v(ρ) satisfies:

ρ
d2v

dρ2 + (2ℓ+ 2 − ρ)dv
dρ + (ρ0 − 2ℓ− 2)v = 0. (4.426)

This equation is that of the confluent hypergeometric function.

5. Power series and termination condition

We develop

v(ρ) =
∞∑
k=0

ckρ
k. (4.427)

The equation gives a recurrence relation between coefficients ck . Generally, this series di-
verges as ρ → ∞ unless the series is a polynomial, i.e. it stops at some finite order k̂. The
termination condition is

ρ0 = 2n, (4.428)

where
n = k̂ + ℓ+ 1 ∈ N∗. (4.429)

6. Expression of bound energy levels

Reinjecting the definition of ρ0,

ρ0 = mee
2

ℏ2κ
= 2n ⇒ κ = mee

2

2ℏ2n
. (4.430)
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Now
E = −ℏ2κ2

2me
= −mee

4

2ℏ2 · 1
n2 . (4.431)

These are the quantized energy levels of the hydrogen atom.

7. Degree of degeneracy

For a level n, possible values of ℓ are

ℓ = 0, 1, 2, . . . , n− 1, (4.432)

and for each ℓ, the values of m go from

m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ, (4.433)

i.e. (2ℓ+ 1) values.
The degree of degeneracy is therefore

gn =
n−1∑
ℓ=0

(2ℓ+ 1) = 2
n−1∑
ℓ=0

ℓ+
n−1∑
ℓ=0

1 = 2(n− 1)n
2 + n = n2. (4.434)

Interpretation: In this non-relativistic model without spin-orbit interactions or relativistic
effects, the energy depends only on the principal quantum number n. This reflects the larger
symmetry of the problem (rotational invariance and Runge-Lenz-type symmetry), which
leads to this high degeneracy.

4.10.2 Ground state (n = 1) and radial properties

7. For n = 1, ℓ = 0, nr = 0 :

u(r) = Are−r/a0 , ⇒ R(r) = u(r)
r

= Ae−r/a0 . (4.435)

Normalization requires:∫ ∞

0
|R(r)|2r2dr = |A|2

∫ ∞

0
e−2r/a0r2dr = 1. (4.436)

The integral yields 2!(a0/2)3 = a3
0/4 ⇒ |A|2 = 4/a3

0. Therefore:

R1,0(r) = 2
a

3/2
0

e−r/a0 . (4.437)

The spherical harmonic is Y00 = 1/
√

4π, so:

ψ1,0,0(r, θ, ϕ) = 2
a

3/2
0

e−r/a0 · 1√
4π

= 1√
πa3

0
e−r/a0 . (4.438)

The normalization is indeed satisfied:∫
|ψ|2d3x =

∫ ∞

0
|R|2r2dr

∫
|Y |2dΩ = 1. (4.439)
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8. The radial probability density is:

P (r) = 4π|R(r)|2r2 = 4π
(

2
a

3/2
0

)2

e−2r/a0r2 = 16π
a3

0
r2e−2r/a0 . (4.440)

It vanishes at r = 0 and as r → ∞; the maximum is found at r = a0. Interpretation: the
most probable location to find the electron is at the Bohr radius.

9. We use: ∫ ∞

0
rne−2r/a0dr = n!

(a0

2

)n+1
. (4.441)

For ⟨r⟩:

⟨r⟩ =
∫ ∞

0
r|R(r)|2r2dr = 4

a3
0

∫ ∞

0
r3e−2r/a0dr = 4

a3
0

· 3!
(a0

2

)4
= 3

2a0. (4.442)

For ⟨r2⟩: ∫
r4e−2r/a0dr = 4!(a0/2)5 = 24(a0/2)5 ⇒ ⟨r2⟩ = 3a2

0. (4.443)

Thus:
(∆r)2 = 3a2

0 − (3a0/2)2 = 3a2
0 − 9

4a
2
0 = 3

4a
2
0. (4.444)

10. The Fourier transform of the ground state yields an isotropic distribution centered at p = 0.
The expectation value is ⟨p⟩ = 0 (even function), and:

⟨p2⟩ =
∫
ψ̃∗(p)p2ψ̃(p)d3p. (4.445)

It can be related to the average kinetic energy:

⟨T ⟩ = ⟨p2⟩
2m = −E1 = 1

2E0. ⇒ ⟨p2⟩ = meE0. (4.446)

11. The 1/n2 dependence explains the structure of the spectral lines described by the Rydberg
formula:

1
λ

= RH

(
1
n2

1
− 1
n2

2

)
. (4.447)

The principal quantum number n orders the energy levels. In non-relativistic QM, ℓ does not
affect En, unlike the relativistic case (Lamb shift, spin-orbit coupling).
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4.11 Towards a relativistic formalism △
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4.12 Pöschl–Teller potential V (x) = − V0

cosh2(αx)

1. The time-independent Schrödinger equation reads:

− ℏ2

2mψ′′(x) − V0

cosh2(αx)
ψ(x) = Eψ(x). (4.448)

2. Let u = tanh(αx), then du
dx = α(1 − u2).

ψ′(x) = dϕ
du · du

dx = α(1 − u2)dϕ
du ,

ψ′′(x) = d
dx

(
α(1 − u2)dϕ

du

)
= α

(
−2uα(1 − u2)dϕ

du + (1 − u2)α(1 − u2)d2ϕ

du2

)
= α2

(
(1 − u2)2 d2ϕ

du2 − 2u(1 − u2)dϕ
du

)
.

3. The equation becomes:

− ℏ2

2mα2 ((1 − u2)2ϕ′′ − 2u(1 − u2)ϕ′)− V0(1 − u2)ϕ = Eϕ. (4.449)

Divide by (1 − u2) and set:

λ(λ+ 1) = 2mV0

ℏ2α2 , µ2 = −2mE
ℏ2α2 , (4.450)

which gives:

(1 − u2)ϕ′′ − 2uϕ′ +
[
λ(λ+ 1) − µ2

1 − u2

]
ϕ = 0. (4.451)

4. We look for a solution of the form

ϕ(u) = (1 − u2)µ/2P (u), (4.452)

where P (u) is a smooth function on ] − 1, 1[, denoted simply as Q(u) := (1 − u2)µ/2 for
brevity.
We then compute the derivatives of ϕ using the product rule:

ϕ′(u) = Q′(u)P (u) +Q(u)P ′(u), (4.453)

ϕ′′(u) = Q′′(u)P (u) + 2Q′(u)P ′(u) +Q(u)P ′′(u). (4.454)

Substitute into the differential equation from the previous question:

(1 − u2)ϕ′′(u) − 2uϕ′(u) +
[
λ(λ+ 1) − µ2

1 − u2

]
ϕ(u) = 0. (4.455)

Compute explicitly Q′(u) and Q′′(u). We have:

Q(u) = (1 − u2)µ/2, ⇒ Q′(u) = −µu(1 − u2)
µ
2 −1, (4.456)
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Q′′(u) = −µ(1 − u2)
µ
2 −1 + µ(µ− 2)u2(1 − u2)

µ
2 −2. (4.457)

Substituting into the full equation:

(1 − u2) [Q′′(u)P (u) + 2Q′(u)P ′(u) +Q(u)P ′′(u)] − 2u [Q′(u)P (u) +Q(u)P ′(u)]

+
[
λ(λ+ 1) − µ2

1 − u2

]
Q(u)P (u) = 0.

All terms contain a common factor Q(u), which can be factored out since Q(u) ̸= 0 on
] − 1, 1[. This yields a differential equation for P (u) only:

(1 − u2)P ′′(u) − 2(µ+ 1)uP ′(u) + [λ(λ+ 1) − µ(µ+ 1)]P (u) = 0. (4.458)

This is a differential equation of the type associated with Jacobi (or generalized Legendre)
polynomials, which have polynomial solutions under certain quantization conditions (see
next question).

5. (a) We have:∫
R

|ψ(x)|2dx =
∫ 1

−1
|ϕ(u)|2 du

1 − u2 =
∫ 1

−1
|P (u)|2(1 − u2)µ−1du < ∞. (4.459)

This is the normalization condition.
(b) Set P (u) =

∑∞
p=0 apu

p. Substituting into the ODE gives:

ap+2 = p(p+ 2µ+ 1) − C

(p+ 2)(p+ 1) ap ∼
∞

p2

p2 ap, (4.460)

with C = λ(λ+ 1) − µ(µ+ 1). So ap+2 ∼ ap as p → ∞.
(c) Thus,

∃c ∈ R∗, P (u) ∼
u→1, p→∞

∑
cup = c

1 − u
, (4.461)

which implies:
|ϕ(u)|2 ∼ 1

(1 − u)2−µ . (4.462)

This is integrable only if µ > 1. For bound states we have µ > 0, hence divergence
occurs if µ ≤ 1. Conclusion: for the integral to converge, the series must terminate
⇒ P is a polynomial.

6. As shown earlier, P (u) is a polynomial of degree n ∈ N, and the condition for series termi-
nation is

an+2 = 0. (4.463)

Using the recurrence relation:

ap+2 = p(p+ 2µ+ 1) − λ(λ+ 1) + µ(µ+ 1)
(p+ 2)(p+ 1) ap, (4.464)

and applying it to p = n, gives:

n(n+ 2µ+ 1) = λ(λ+ 1) − µ(µ+ 1). (4.465)
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Developing both sides:

LHS: n(n+ 2µ+ 1) = n2 + 2nµ+ n,

RHS: λ(λ+ 1) − µ(µ+ 1) = λ2 + λ− µ2 − µ.

Gathering terms:
µ2 + (2n+ 1)µ+ (n2 + n− λ2 − λ) = 0. (4.466)

We get a quadratic equation in µ:

µ2 + (2n+ 1)µ+A = 0, where A = n(n+ 1) − λ(λ+ 1). (4.467)

Its discriminant is:

∆ = (2n+ 1)2 − 4A = (2n+ 1)2 − 4(n(n+ 1) − λ(λ+ 1)). (4.468)

Expand:

∆ = 4n2 + 4n+ 1 − 4n(n+ 1) + 4λ(λ+ 1)
= (4n2 + 4n+ 1 − 4n2 − 4n) + 4λ(λ+ 1)
= 1 + 4λ(λ+ 1).

Thus,
∆ = (2λ+ 1)2. (4.469)

So the discriminant is a perfect square, and the equation admits two real roots:

µ± = −(2n+ 1) ± (2λ+ 1)
2 . (4.470)

We compute both:

µ1 = −(2n+ 1) + (2λ+ 1)
2 = λ− n, µ2 = −(2n+ 1) − (2λ+ 1)

2 = −(λ+ n+ 1).
(4.471)

The only physically admissible solution is the first, since for a bound state µ > 0 (because
E < 0 ⇒ µ2 > 0).
Therefore, the termination condition gives:

µ = λ− n, with n ∈ N, n < λ. (4.472)

7. From Eq. (4.450), we deduce:

En = −ℏ2α2

2m (λ− n)2, n = 0, 1, . . . , ⌊λ⌋. (4.473)

8. The number of bound states is N = ⌊λ⌋ + 1, a finite number.

9. Physically, the potential V (x) = −V0/ cosh2(αx) decays exponentially at infinity (V (x) ∼
−4V0e

−2α|x|), too rapidly to allow for an infinite number of bound states. This is a finite-
width potential well: the particle can only be confined to a finite number of energy levels.
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4.13 Electrodynamic Instability of the Classical Atom

4.13.1 Calculation of the braking and radiation force Frad.

1.
dEat = dW = Frad · vdt =⇒ ∆Eat =

∫ t2

t1

Frad · vdt (4.474)

2. Be careful, this energy variation is the opposite of the energy radiated during the same in-
terval:

dEat = −P dt = −2e2a2

3c3 dt = −2e2v̇2

3c3 dt (4.475)

We obtain:

∆Eat = −2e2

3c3

∫ t2

t1

v̇2dt (4.476)

3. Moreover, by integrating by parts and assuming quasi-periodicity:

∆Eat = 2e2

3c3

∫ t2

t1

v̈ · vdt (4.477)

By comparison with 4.474, a candidate force is the Abraham-Lorentz radiation braking
force:

Frad = 2e2

3c3 v̈ (4.478)

4. Now consider the Thomson model, in which the electron is bound to the origin by a har-
monic restoring force. The equation of motion becomes:

mr̈ = −mω2
0r + 2e2

3c3
...r (4.479)

We look for a solution of the form r(t) = Re
[
r(0)eiωt

]
. The perturbative expansion:

ω = ω0
[
1 + a(ω0τ) + O((ω0τ)2)

]
(4.480)

gives a = 1
2 , hence finally:

r(t) = r(0)e−ω2
0τt cos(ω0t) (4.481)

The motion is therefore a damped oscillator. The characteristic damping time, or typical
lifetime of the atom in this model, is:

Tnat = 1
ω2

0τ
∼ 10−8 s (4.482)

The classical atom is thus fundamentally unstable: the electron spirals toward the nucleus,
very slowly on the atomic (pseudo-period) scale, but very rapidly on the macroscopic scale.
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4.13.2 Conceptual problems generated by the braking force Frad.

1. The equation to solve is:
v̇ − τ v̈ = 1

m
F(t) (4.483)

whose general solution is:

v̇(t) = v(t0)e(t−t0)/τ − 1
mτ

∫ t

t0

e(t−t′)/τF(t′) dt′ (4.484)

2. An unacceptable phenomenon, sometimes called preacceleration of a charged particle, ap-
pears: if F = 0, the above expression clearly shows that the acceleration diverges exponen-
tially at large times.

3. One can formally eliminate the divergent solutions by taking t0 = +∞. This is a boundary
condition that effectively eliminates the so-called “initial condition”.

4. Taking t0 = +∞, we obtain:

v̇(t) = − 1
mτ

∫ +∞

t

e(t−t′)/τF(t′) dt′

= − 1
m

∫ +∞

t

K(t− t′)F(t′) dt′ (4.485)

with K(t− t′) = 1
τ e

(t−t′)/τ .
This is the regularized form, all the more so since the limit of zero charge correctly reproduces
the Lorentz Force Electrodynamics (LFE).
Indeed, in the limit e → 0, we have τ → 0 and the kernel K(t − t′) tends to a Dirac delta
function δ(t− t′), yielding:

v̇(t) = 1
m

F(t) (4.486)

5. It is already apparent that the acceleration at instant t depends on future values of the force.
This equation therefore violates the principle of causality. A change of variable makes this
clear. Let s = t′−t

τ , we get:

v̇(t) = − 1
m

∫ +∞

0
e−sF(t+ τs) ds (4.487)

6. With a step force:

F(t) =
{

0 if t < 0
F0 if t ≥ 0

(4.488)

we obtain:

t < 0 : v̇(t) = − 1
mτ

∫ +∞

0
e(t−t′)/τ · 0 dt′ = −F0

m
et/τ (4.489)

t > 0 : v̇(t) = − F0

mτ

∫ +∞

t

e(t−t′)/τ dt′ = −F0

m
(4.490)
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4.14 Geodesics in an Optical Medium △
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4.15 Bose-Einstein Condensation

1. (a) Expression for the average occupation number ⟨nε⟩ according to Bose-Einstein
statistics
For a bosonic system at thermal equilibrium in the grand-canonical ensemble, the aver-
age number of particles in an energy state ε is given by the Bose-Einstein distribution.
The partition function for this state is:

Zε =
∞∑

nε=0
e−βnε(ε−µ) = 1

1 − e−β(ε−µ) , (4.491)

where β = 1
kBT

and µ is the chemical potential (which must satisfy µ < ε for conver-
gence).
The average number of particles in this state is:

⟨nε⟩ = 1
Zε

∞∑
nε=0

nεe
−βnε(ε−µ). (4.492)

By differentiating Zε with respect to β(ε− µ), we find:

⟨nε⟩ = − 1
Zε

∂Zε
∂[β(ε− µ)] = − ∂ lnZε

∂[β(ε− µ)] = 1
eβ(ε−µ) − 1

. (4.493)

(b) Expression of the density of states g(ε) for a non-relativistic free gas in a cubic
box
Consider a free particle gas in a volume V with periodic boundary conditions. The
non-relativistic kinetic energy is:

ε = ℏ2k2

2m , (4.494)

where k = |k| is the wave vector magnitude.
The number of states with wave vectors inside a sphere of radius k is given by the
quantization in k-space:

N (k) = V

(2π)3 × 4πk3

3 . (4.495)

Differentiating with respect to k gives the density of states in k:

dN
dk = V

2π2 k
2. (4.496)

Using the change of variables ε = ℏ2k2

2m , we have:

k =
√

2mε
ℏ2 , dk = m

ℏ2k
dε. (4.497)

Thus the density of states per unit energy is:

g(ε) = dN
dε = dN

dk
dk
dε = V

2π2 k
2 × m

ℏ2k
= V

2π2
m

ℏ2 k = V

2π2
m

ℏ2

√
2mε
ℏ2 . (4.498)

Simplifying yields:

g(ε) = V

4π2

(
2m
ℏ2

)3/2
ε1/2. (4.499)
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2. Formula for the total average number of particles

The total average number of particles is the integral over all energy levels of the average
occupation weighted by the density of states:

⟨N⟩ =
∫ +∞

0
⟨nε⟩g(ε)dε =

∫ +∞

0

g(ε)
eβ(ε−µ) − 1

dε, (4.500)

which matches the given expression.

3. Chemical potential as a function of temperature and density

In a closed system withN particles and density ρ = N/V , the canonical and grand-canonical
ensembles are equivalent, so we set ⟨N⟩ = N .
Using the substitution x = βε and defining φ(T ) = eµ(T )/(kBT ), the integral becomes:

ρ = N

V
=
(

2mkBT
4π2ℏ2

)3/2 ∫ +∞

0

x1/2

ex/φ(T ) − 1dx =
(

2mkBT
4π2ℏ2

)3/2 ∫ +∞

0

x1/2

ex/φ(T ) − 1
dx,

(4.501)
which corresponds to equation (3.171).

4. Behavior of the chemical potential µ(T )
Since φ(T ) = eµ(T )/(kBT ) and µ(T ) < 0, we have 0 < φ(T ) < 1. The function

f(φ) =
∫ +∞

0

x1/2

ex/φ− 1dx (4.502)

is increasing in φ on (0, 1). When T decreases, the prefactor
( 2mkBT

4π2ℏ2

)3/2 decreases as well.
To keep the equality, φ(T ) must increase, so µ(T ) increases.

5. Constraint on chemical potential and critical temperature

The chemical potential µ must be strictly less than the lowest energy level (taken here as
zero, the ground state), so µ < 0. At the limit µ → 0−, we define the critical temperature
TBE by:

ρ =
(

2mkBTBE

4π2ℏ2

)3/2 ∫ +∞

0

x1/2

ex − 1dx. (4.503)

Using the approximation (3.172), we get:

TBE = 2πℏ2

mkB

(
ρ

ζ(3/2)

)2/3
, (4.504)

where ζ(3/2) ≃ 2.612 is the Riemann zeta function.

6. Breakdown of equation (3.171) for T ≤ TBE

For T ≤ TBE, setting µ = 0 no longer satisfies equation (3.171) because the integral saturates
and cannot increase further. The issue is that the population of the ground state, which can
contain a macroscopic fraction of particles (the condensate), has not been taken into account.

7. Population of the ground state N0

Isolating the population of the ground state, N0, we write:

N = N0 +
∫ +∞

0

g(ε)
eβε − 1dε = N0 +

(
2m

4π2ℏ2

)3/2
V

∫ +∞

0

ε1/2

eβε − 1dε, (4.505)
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with µ = 0. Therefore, the condensate fraction is:

N0

N
= 1 −

(
T

TBE

)3/2
. (4.506)

The condensate fraction exists only for T < TBE and grows as temperature decreases.

8. Grand potential J and pressure for T ≤ TBE

For T ≤ TBE, the grand potential is:

J
kBT

= − ln(1 +N0) +
(

2m
4π2ℏ2

)3/2
V

∫ +∞

0
ε1/2 ln

(
1 − e−βε) dε. (4.507)

In the thermodynamic limit, N0 is very large so ln(1 +N0) ≃ lnN0, which becomes negli-
gible at the intensive scale. The pressure P = −J /V is then:

P = kBT

λ3
th

∫ +∞

0

x3/2

ex − 1dx, (4.508)

where λth =
√

2πℏ2

mkBT
is the thermal de Broglie wavelength. Using (3.175), we see the pres-

sure is independent of N0, depends only on T , and decreases with temperature.
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4.16 Decay Chain

4.16.1 Physical modeling of the decay chain

1. The first nucleus N1 decays spontaneously with decay constant λ1, so:

dN1

dt = −λ1N1. (4.509)

Each nucleus Nk (for k ∈ J2, n − 1K) is created from the decay of Nk−1 and disappears by
its own decay. Thus:

dNk
dt = −λkNk + λk−1Nk−1, for k ∈ J2, nK. (4.510)

2. For n = 2, the system is: {
dN1
dt = −λ1N1,

dN2
dt = −λ2N2 + λ1N1.

(4.511)

Solving:
N1(t) = N0e

−λ1t, (4.512)

Then:

N2(t) =
∫ t

0
λ1N1(s)e−λ2(t−s)ds = λ1N0

∫ t

0
e−λ1se−λ2(t−s)ds. (4.513)

Explicitly:
N2(t) = λ1N0

λ2 − λ1

(
e−λ1t − e−λ2t

)
(for λ1 ̸= λ2). (4.514)

3. We compute:

N1(t)+N2(t) = N0e
−λ1t+ λ1N0

λ2 − λ1

(
e−λ1t − e−λ2t

)
= N0

(
e−λ1t + λ1

λ2 − λ1
(e−λ1t − e−λ2t)

)
.

(4.515)
Simplifying:

N1(t) +N2(t) = N0

(
λ2 − λ1 + λ1

λ2 − λ1
e−λ1t − λ1

λ2 − λ1
e−λ2t

)
= N0. (4.516)

This expresses conservation of the total number of nuclei.

4. N2(t) reaches a maximum when dN2
dt = 0:

dN2

dt = −λ2N2 + λ1N1 = 0 ⇒ N2 = λ1

λ2
N1(t). (4.517)

Inserting N1(t) = N0e
−λ1t into the expression of N2(t), and solving for t yields:

tmax = 1
λ2 − λ1

ln
(
λ2

λ1

)
. (4.518)
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4.16.2 Mathematical analysis

1. The matrix A is lower triangular with distinct diagonal coefficients −λk . The matrix A is
diagonalizable over R with eigenvalues {−λ1, . . . ,−λn−1, 0} since λn = 0.

Proof:

Consider the matrix A ∈ Rn×n defined by:

A =


−λ1 0 0 · · · 0
λ1 −λ2 0 · · · 0
0 λ2 −λ3 · · · 0
...

. . . . . . . . .
...

0 · · · 0 λn−1 −λn

 . (4.519)

We want to determine the eigenvalues of A, i.e., the roots of the characteristic polynomial
χA(X) = det(A−XIn).

By construction, the matrixA−XIn is lower tridiagonal, and we denoteDn = det(A−XIn).
We prove by induction on n that:

Dn =
n∏
k=1

(−λk −X). (4.520)

Base case (n = 1). We have simply:

D1 = det(−λ1 −X) = −λ1 −X, (4.521)

which matches the formula.

Inductive step. Assume the formula holds for n− 1, i.e.:

Dn−1 =
n−1∏
k=1

(−λk −X). (4.522)

We develop Dn = det(An −XIn) by Laplace expansion along the last row, or equivalently
use the recurrence relation for a lower tridiagonal matrix of the form:

Dn = (−λn −X)Dn−1, (4.523)

since only the diagonal term and the term just above it appear in the expansion, and the
upper term is zero due to the triangular form.

Thus, we obtain:

Dn = (−λn −X)
n−1∏
k=1

(−λk −X) =
n∏
k=1

(−λk −X), (4.524)

which concludes the induction.

Conclusion. The eigenvalues of A are therefore given by:

−λ1,−λ2, . . . ,−λn = 0 . (4.525)
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2. Since A is a constant matrix, the Cauchy-Lipschitz theorem guarantees the existence and
uniqueness of a global solution for all t ≥ 0.

3. Let E(t) = ∥N(t)∥2 =
∑n
k=1 Nk(t)2. Since N(t) is differentiable (solution of a linear ODE),

E(t) is differentiable as well.

(a) We have

⟨x|Ax⟩ = x⊤Ax = (x⊤Ax)⊤ = 1
2x

⊤(A+A⊤)x = x⊤Sx = ⟨x|Sx⟩ , (4.526)

where S = A+A⊤

2 is the symmetric part of A. This identity holds for all x ∈ Rn.
(b) The matrix S is symmetric and tridiagonal, with:

Skk = −λk, Sk,k+1 = Sk+1,k = λk
2 , for k = 1, . . . , n− 1. (4.527)

Then for any vector x = (x1, . . . , xn), we compute:

x⊤Sx =
n∑
k=1

Skkx
2
k + 2

n−1∑
k=1

Sk,k+1xkxk+1

=
n∑
k=1

(−λk)x2
k +

n−1∑
k=1

λkxkxk+1

= −1
2

n−1∑
k=1

λk(xk − xk+1)2 − λ1

2 x2
1.

Since all λk ≥ 0, this scalar product is always less than or equal to zero.
(c) Applying this to N(t), we obtain:

E′(t) = d
dt∥N(t)∥2 = 2

〈
N(t)

∣∣Ṅ(t)
〉

= 2 ⟨N(t)|AN(t)⟩ = 2 ⟨N(t)|SN(t)⟩ ≤ 0.
(4.528)

Therefore, E(t) is a non-increasing function, and the system is stable.

4. The dynamical system is given by:

Ṅ(t) = AN(t), (4.529)

where A ∈ Mn(R) is a chain-decay matrix with λk ≥ α > 0 for all k ∈ J1, n − 1K, and
λn = 0.
The matrix A is triangular or diagonalizable over R, with one eigenvalue equal to 0 (corre-
sponding to the stable isotope) and all other eigenvalues satisfying Re(λ) ≤ −α.
We consider an operator norm (equivalent to the usual norm), adapted to the spectrum ofA,
such that:

∀x ∈ Rn, ∥eAtx∥ ≤ Ceµt∥x∥, with µ = max{Re(λ) | λ ∈ Sp(A), λ ̸= 0}. (4.530)

By hypothesis, µ ≤ −α < 0.
Note that N∞ ∈ kerA, hence AN∞ = 0, and we have:

N(t) − N∞ = eAt(N0 − N∞). (4.531)

Taking norms:
∥N(t) − N∞∥ ≤ Ce−αt∥N0 − N∞∥ ≤ Ce−αt∥N0∥. (4.532)

This proves exponential convergence toward the equilibrium.
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5. Summing the differential system:

n∑
k=1

dNk
dt = −

n−1∑
k=1

λkNk +
n∑
k=2

λk−1Nk−1 = 0, (4.533)

which implies:
n∑
k=1

Nk(t) =
n∑
k=1

Nk(0), ∀t ≥ 0. (4.534)

Thus, the total number of nuclei is conserved.
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4.17 From the Principle of Least Action to Einstein’s Equa-
tions

4.17.1 From classical geometry to Lorentzian geometry

1. Geometry of a surface in R3

(a) Parametrization and first fundamental form
Let a surface Σ ⊂ R3 be parametrized by

X(u, v) =
(
X(u, v), Y (u, v), Z(u, v)

)
,

where (u, v) are local coordinates on the surface.
The infinitesimal line element ds along the surface is given by

ds2 = dX · dX = (∂uX du+ ∂vX dv) · (∂uX du+ ∂vX dv),

where ∂uX = ∂X
∂u and ∂vX = ∂X

∂v .
Expanding the dot product:

ds2 = (∂uX · ∂uX) du2 + 2(∂uX · ∂vX) dudv + (∂vX · ∂vX) dv2. (4.535)

We define the coefficients of the first fundamental form:

E = ∂uX · ∂uX, F = ∂uX · ∂vX, G = ∂vX · ∂vX.

Thus, the line element can be written compactly as:

ds2 = E du2 + 2F dudv +Gdv2.

The associated matrix is
g =

(
E F

F G

)
,

which defines a scalar product on the tangent space of the surface at each point. Re-
mark: g is symmetric, and for a regular surface we have E,G > 0 and EG− F 2 > 0,
which ensures that the metric is positive definite.

(b) Example: the plane R2

Take X(x, y) = (x, y, 0). Then

∂xX = (1, 0, 0), ∂yX = (0, 1, 0),

so
E = 1, F = 0, G = 1, ⇒ ds2 = dx2 + dy2.

(c) Second fundamental form and curvature
The second fundamental form II measures the curvature of the surface in the ambi-
ent space. For a surface X(u, v) with unit normal vector n, it is written as

II = Ldu2 + 2M dudv +N dv2,

where
L = Xuu · n, M = Xuv · n, N = Xvv · n.
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The Gaussian curvature is the product of the principal curvatures k1, k2, which are the
eigenvalues of g−1II:

κ = k1k2 = det II
det g .

Thus, κ is an intrinsic quantity of the surface: it does not depend on how the surface
is embedded in R3.

2. Intrinsic definition of a metric on a manifold

(a) On a manifold M, one can locally define the distance between points via a metric tensor
gµν(x):

ds2 = gµν(x) dxµ dxν ,

where µ, ν = 1, . . . , n and n = dim M.

(b) Example: for a surface in R3, gµν corresponds exactly to the matrix g =
(
E F

F G

)
defined above.

3. Hyperbolic metric on the upper half-plane

(a) Define the hyperbolic metric:

ds2 = dx2 + dy2

y2 , y > 0.

The metric matrix and its determinant:

g = 1
y2

(
1 0
0 1

)
, det g = 1

y4 .

(b) The Christoffel symbols:

Γxxy = Γxyx = −1
y
, Γyxx = 1

y
, Γyyy = −1

y
, Γxyy = Γyxy = Γyyx = 0.

(c) Gaussian curvature: κ = −1 (constant and negative).
(d) Geodesics

Let a curve be parametrized by x, y(x). The action (length) is:

L =
√

1 + (y′)2

y
, y′ = dy

dx.

Since L does not depend explicitly on x, one can use Beltrami’s identity:

L − y′ ∂L
∂y′ = λ ⇒ y

√
1 + (y′)2 = 1

λ
.

Solving for y′:

y′ = ±
√

1
λ2y2 − 1.

Integrating, one obtains the equation of a circle:

(x− x0)2 + y2 = 1
λ2 .

Special case λ = 0: vertical geodesic x = x0.

149



Chapter 4. Exercise Solutions 4.17. From the Principle of Least Action to Einstein’s Equations

4.17.2 Pseudo-Riemannian manifolds and geodesics

1. Lorentzian metrics

(a) A pseudo-Riemannian manifold is a manifold equipped with a symmetric metric
tensor gµν(x) which is not necessarily positive definite. A Lorentzian metric is a
pseudo-Riemannian metric of signature (−,+,+,+) (1 time direction and 3 spatial
directions), adapted to special and general relativity.
Thus, for any curve γ(τ) on the manifold, one defines the "length" or interval:

ds2 = gµν dxµ dxν ,

which can be negative, zero, or positive, depending on the type of tangent vector:
• ds2 < 0: timelike vector,
• ds2 = 0: null/lightlike vector (trajectory of light),
• ds2 > 0: spacelike vector.

(b) Example: Minkowski metric

ηµν = diag(−1, 1, 1, 1), ⇒ ds2 = −dt2 + dx2 + dy2 + dz2.

Timelike vectors have negative norm, spacelike vectors have positive norm, and null
vectors (such as the trajectory of a photon) have zero norm.

2. Curves and geodesics

Let a curve γ(t) = (x0(t), x1(t), x2(t), x3(t)) on the manifold, parametrized by a parameter
t (often the proper time τ for a massive particle).

(a) The length (or action) of the curve is

L[γ] =
∫ t2

t1

√
|gµν(x) ẋµẋν | dt, (4.536)

where ẋµ = dxµ

dt .
(b) The curves that extremize this action (minimize or maximize depending on the type)

satisfy the Euler-Lagrange equations:

d
dt

(
∂L
∂ẋλ

)
− ∂L
∂xλ

= 0, (4.537)

with L = 1
2gµν(x)ẋµẋν (quadratic form often used to simplify computations, it gives

the same geodesics).
(c) Detailed development:

For L = 1
2gµν(x)ẋµẋν , we compute:

∂L
∂ẋλ

= gλν ẋ
ν , (4.538)

and
∂L
∂xλ

= 1
2∂λgµν ẋ

µẋν . (4.539)

The Euler-Lagrange equations then give

d
dt (gλν ẋ

ν) − 1
2∂λgµν ẋ

µẋν = 0. (4.540)
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Expanding the derivative:

gλν ẍ
ν + (∂σgλν)ẋσẋν − 1

2∂λgµν ẋ
µẋν = 0.

Multiplying by gλκ to isolate ẍκ:

ẍκ + Γκµν ẋµẋν = 0,

where the Christoffel symbols are

Γκµν = 1
2g

κλ (∂µgνλ + ∂νgµλ − ∂λgµν) . (4.541)

Thus, geodesics are the curves whose covariant acceleration vanishes.
(d) Geodesic equations in a local inertial frame

Consider a point p of spacetime and a local frame (ξα) centered at p (local inertial
coordinates or "normal coordinates"). By definition, in this frame:

gαβ(ξ = 0) = ηαβ , ∂γgαβ(ξ = 0) = 0, (4.542)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric.
The Christoffel symbols are defined as:

Γαβγ = 1
2g

αδ (∂βgγδ + ∂γgβδ − ∂δgβγ) . (4.543)

In this local frame:
∂βgγδ = 0 ⇒ Γαβγ = 0. (4.544)

The general geodesic equation is:

d2xµ

dτ2 + Γµνρ
dxν

dτ
dxρ

dτ = 0. (4.545)

In local coordinates (ξα), the Christoffels vanish:

d2ξα

dτ2 + 0 · dξν

dτ
dξρ

dτ = d2ξα

dτ2 = 0. (4.546)

This equation describes uniform rectilinear motion, exactly as in special relativity.
Coordinate change back to the general metric xµ:
If one performs a coordinate change ξα 7→ xµ(ξ), then the second derivative transforms
as:

d2xµ

dτ2 = ∂xµ

∂ξα
d2ξα

dτ2 + ∂2xµ

∂ξα∂ξβ
dξα

dτ
dξβ

dτ . (4.547)

Since d2ξα/dτ2 = 0, it remains:

d2xµ

dτ2 + − ∂2xµ

∂ξα∂ξβ
∂ξα

∂xν
∂ξβ

∂xρ︸ ︷︷ ︸
Γµ

νρ

dxν

dτ
dxρ

dτ = 0. (4.548)

One recognizes the general definition of the Christoffel symbols under coordinate change.
Conclusion: Thus, geodesics in the general metric gµν(x) are given by
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4.17.3 From classical geometry to Lorentzian geometry

1. Geometry of a surface in R3

(a) Parametrization and first fundamental form
Let a surface Σ ⊂ R3 be parametrized by

X(u, v) =
(
X(u, v), Y (u, v), Z(u, v)

)
,

where (u, v) are local coordinates on the surface.
The infinitesimal line element ds along the surface is given by

ds2 = dX · dX = (∂uX du+ ∂vX dv) · (∂uX du+ ∂vX dv),

where ∂uX = ∂X
∂u and ∂vX = ∂X

∂v .
Expanding the dot product:

ds2 = (∂uX · ∂uX) du2 + 2(∂uX · ∂vX) dudv + (∂vX · ∂vX) dv2. (4.549)

We define the coefficients of the first fundamental form:

E = ∂uX · ∂uX, F = ∂uX · ∂vX, G = ∂vX · ∂vX.

Thus, the line element can be written compactly as:

ds2 = E du2 + 2F dudv +Gdv2.

The associated matrix is
g =

(
E F

F G

)
,

which defines a scalar product on the tangent space of the surface at each point. Re-
mark: g is symmetric, and for a regular surface we have E,G > 0 and EG− F 2 > 0,
which ensures that the metric is positive definite.

(b) Example: the plane R2

Take X(x, y) = (x, y, 0). Then

∂xX = (1, 0, 0), ∂yX = (0, 1, 0),

so
E = 1, F = 0, G = 1, ⇒ ds2 = dx2 + dy2.

(c) Second fundamental form and curvature
The second fundamental form II measures the curvature of the surface in the ambi-
ent space. For a surface X(u, v) with unit normal vector n, it is written as

II = Ldu2 + 2M dudv +N dv2,

where
L = Xuu · n, M = Xuv · n, N = Xvv · n.

The Gaussian curvature is the product of the principal curvatures k1, k2, which are the
eigenvalues of g−1II:

κ = k1k2 = det II
det g .

Thus, κ is an intrinsic quantity of the surface: it does not depend on how the surface
is embedded in R3.
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2. Intrinsic definition of a metric on a manifold

(a) On a manifold M, one can locally define the distance between points via a metric tensor
gµν(x):

ds2 = gµν(x) dxµ dxν ,

where µ, ν = 1, . . . , n and n = dim M.

(b) Example: for a surface in R3, gµν corresponds exactly to the matrix g =
(
E F

F G

)
defined above.

3. Hyperbolic metric on the upper half-plane

(a) Define the hyperbolic metric:

ds2 = dx2 + dy2

y2 , y > 0.

The metric matrix and its determinant:

g = 1
y2

(
1 0
0 1

)
, det g = 1

y4 .

(b) The Christoffel symbols:

Γxxy = Γxyx = −1
y
, Γyxx = 1

y
, Γyyy = −1

y
, Γxyy = Γyxy = Γyyx = 0.

(c) Gaussian curvature: κ = −1 (constant and negative).
(d) Geodesics

Let a curve be parametrized by x, y(x). The action (length) is:

L =
√

1 + (y′)2

y
, y′ = dy

dx.

Since L does not depend explicitly on x, one can use Beltrami’s identity:

L − y′ ∂L
∂y′ = λ ⇒ y

√
1 + (y′)2 = 1

λ
.

Solving for y′:

y′ = ±
√

1
λ2y2 − 1.

Integrating, one obtains the equation of a circle:

(x− x0)2 + y2 = 1
λ2 .

Special case λ = 0: vertical geodesic x = x0.
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4.17.4 Pseudo-Riemannian manifolds and geodesics

1. Lorentzian metrics

(a) A pseudo-Riemannian manifold is a manifold equipped with a symmetric metric
tensor gµν(x) which is not necessarily positive definite. A Lorentzian metric is a
pseudo-Riemannian metric of signature (−,+,+,+) (1 time direction and 3 spatial
directions), adapted to special and general relativity.
Thus, for any curve γ(τ) on the manifold, one defines the "length" or interval:

ds2 = gµν dxµ dxν ,

which can be negative, zero, or positive, depending on the type of tangent vector:
• ds2 < 0: timelike vector,
• ds2 = 0: null/lightlike vector (trajectory of light),
• ds2 > 0: spacelike vector.

(b) Example: Minkowski metric

ηµν = diag(−1, 1, 1, 1), ⇒ ds2 = −dt2 + dx2 + dy2 + dz2.

Timelike vectors have negative norm, spacelike vectors have positive norm, and null
vectors (such as the trajectory of a photon) have zero norm.

2. Curves and geodesics

Let a curve γ(t) = (x0(t), x1(t), x2(t), x3(t)) on the manifold, parametrized by a parameter
t (often the proper time τ for a massive particle).

(a) The length (or action) of the curve is

L[γ] =
∫ t2

t1

√
|gµν(x) ẋµẋν | dt, (4.550)

where ẋµ = dxµ

dt .
(b) The curves that extremize this action (minimize or maximize depending on the type)

satisfy the Euler-Lagrange equations:

d
dt

(
∂L
∂ẋλ

)
− ∂L
∂xλ

= 0, (4.551)

with L = 1
2gµν(x)ẋµẋν (quadratic form often used to simplify computations, it gives

the same geodesics).
(c) Detailed development:

For L = 1
2gµν(x)ẋµẋν , we compute:

∂L
∂ẋλ

= gλν ẋ
ν , (4.552)

and
∂L
∂xλ

= 1
2∂λgµν ẋ

µẋν . (4.553)

The Euler-Lagrange equations then give

d
dt (gλν ẋ

ν) − 1
2∂λgµν ẋ

µẋν = 0. (4.554)

154



Chapter 4. Exercise Solutions 4.17. From the Principle of Least Action to Einstein’s Equations

Expanding the derivative:

gλν ẍ
ν + (∂σgλν)ẋσẋν − 1

2∂λgµν ẋ
µẋν = 0.

Multiplying by gλκ to isolate ẍκ:

ẍκ + Γκµν ẋµẋν = 0,

where the Christoffel symbols are

Γκµν = 1
2g

κλ (∂µgνλ + ∂νgµλ − ∂λgµν) . (4.555)

Thus, geodesics are the curves whose covariant acceleration vanishes.
(d) Geodesic equations in a local inertial frame

Consider a point p of spacetime and a local frame (ξα) centered at p (local inertial
coordinates or "normal coordinates"). By definition, in this frame:

gαβ(ξ = 0) = ηαβ , ∂γgαβ(ξ = 0) = 0, (4.556)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric.
The Christoffel symbols are defined as:

Γαβγ = 1
2g

αδ (∂βgγδ + ∂γgβδ − ∂δgβγ) . (4.557)

In this local frame:
∂βgγδ = 0 ⇒ Γαβγ = 0. (4.558)

The general geodesic equation is:

d2xµ

dτ2 + Γµνρ
dxν

dτ
dxρ

dτ = 0. (4.559)

In local coordinates (ξα), the Christoffels vanish:

d2ξα

dτ2 + 0 · dξν

dτ
dξρ

dτ = d2ξα

dτ2 = 0. (4.560)

This equation describes uniform rectilinear motion, exactly as in special relativity.
Coordinate change back to the general metric xµ:
If one performs a coordinate change ξα 7→ xµ(ξ), then the second derivative transforms
as:

d2xµ

dτ2 = ∂xµ

∂ξα
d2ξα

dτ2 + ∂2xµ

∂ξα∂ξβ
dξα

dτ
dξβ

dτ . (4.561)

Since d2ξα/dτ2 = 0, it remains:

d2xµ

dτ2 + − ∂2xµ

∂ξα∂ξβ
∂ξα

∂xν
∂ξβ

∂xρ︸ ︷︷ ︸
Γµ

νρ

dxν

dτ
dxρ

dτ = 0. (4.562)

One recognizes the general definition of the Christoffel symbols under coordinate change.
Conclusion: Thus, geodesics in the general metric gµν(x) are given by

d2xµ

dτ2 + Γµνρ(x)dxν

dτ
dxρ

dτ = 0, (4.563)

which corresponds to the trajectory of a free particle in a curved spacetime.
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4.17.5 Curvature and the Einstein–Hilbert action

1. Definition of curvature objects

Let a differentiable manifold be equipped with a metric gµν . First one defines the Levi-Civita
connection, which is the unique torsion-free connection compatible with the metric:

∇λgµν = 0, Γλµν = Γλνµ.

From the connection one defines the Riemann tensor Rρσµν which measures the non-
commutativity of covariant derivatives:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (4.564)

The Ricci tensor is obtained by contracting the Riemann tensor:

Rµν = Rλµλν . (4.565)

The scalar curvature R is the trace of the Ricci tensor:

R = gµνRµν . (4.566)

2. Case of a locally flat metric

If the metric is locally flat (i.e. there exists a frame where gµν = ηµν and ∂λgµν = 0), then
all Christoffel symbols Γλµν = 0. Consequently, all first and second derivatives vanish, and
therefore:

Rρσµν = 0, Rµν = 0, R = 0.

3. Covariant scalar action: the Einstein–Hilbert action

We seek an action S[g] constructed from gµν and its derivatives up to second order, which
is a scalar under coordinate transformations. The unique candidate (up to an overall multi-
plicative constant) is:

S[g] = 1
16πG

∫
R

√
−g d4x, (4.567)

where g = det(gµν) and G is the gravitational constant.
This action is called the Einstein–Hilbert action.

4. Variation of the action and Einstein equations

To obtain the equations of motion, vary S[g] with respect to the metric gµν :

δS[g] = 1
16πG

∫ (
δR

√
−g +Rδ

√
−g
)

d4x. (4.568)

We use the following formulas:

δ
√

−g = −1
2

√
−ggµνδgµν , (4.569)

δRµν = ∇λδΓλµν − ∇νδΓλµλ. (4.570)

Integrating by parts the covariant derivatives and discarding boundary terms yields the vac-
uum Einstein equations:

Rµν − 1
2Rgµν = 0. (4.571)
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5. Adding matter

If one adds a matter term Smatter[g, ψ], the total action is:

Stotal = 1
16πG

∫
R

√
−g d4x+ Smatter[g, ψ], (4.572)

where ψ denotes the matter fields.
The energy–momentum tensor is defined by:

Tµν := − 2√
−g

δSmatter

δgµν
. (4.573)

The variation of the total action then leads to the full Einstein equations:

Rµν − 1
2Rgµν = 8πGTµν . (4.574)

6. Physical interpretation

• The left-hand side, Rµν − 1
2Rgµν , describes the curvature of spacetime.

• The right-hand side, 8πGTµν , describes the distribution of energy and matter.
• Thus, gravity is interpreted as the curvature of spacetime produced by matter and en-

ergy.

4.17.6 Principle of least action and the Einstein equations

1. Functional variation for a field

Let an action for a scalar or tensor field φ(x) be:

S[φ] =
∫

L(φ, ∂µφ) d4x. (4.575)

Consider an infinitesimal variationφ 7→ φ+εη, with η(x) of compact support. The variation
of the action reads:

δS = d
dεS[φ+ εη]

∣∣∣∣
ε=0

=
∫ (

∂L
∂φ

η + ∂L
∂(∂µφ)∂µη

)
d4x. (4.576)

Integrating by parts the second term and discarding boundary contributions:∫
∂L

∂(∂µφ)∂µη d4x = −
∫
∂µ

(
∂L

∂(∂µφ)

)
η d4x. (4.577)

Hence:
δS =

∫ (
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

)
η d4x. (4.578)

Since η is arbitrary, one obtains the Euler–Lagrange equations:

∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (4.579)
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2. Application to the Einstein–Hilbert action

The Einstein–Hilbert action depends on the metric gµν and its second derivatives:

SEH[g] = 1
16πG

∫
R

√
−g d4x. (4.580)

Consider a variation of the metric:

gµν 7→ gµν + δgµν . (4.581)

The variation of the action reads:

δSEH = 1
16πG

∫ (
δR

√
−g +Rδ

√
−g
)

d4x. (4.582)

We use the identities:

δ
√

−g = −1
2

√
−ggµνδgµν , (4.583)

δRµν = ∇λδΓλµν − ∇νδΓλµλ, (4.584)
δR = gµνδRµν +Rµνδg

µν . (4.585)

Integrating by parts and discarding boundary terms (variation vanishing on the boundary),
the terms containing δΓ disappear. One obtains:

δSEH = 1
16πG

∫ (
Rµν − 1

2Rgµν
)
δgµν

√
−g d4x. (4.586)

Since δgµν is arbitrary, the principle of least action implies the vacuum Einstein equations:

Rµν − 1
2Rgµν = 0. (4.587)

3. Adding matter and the energy–momentum tensor

If one adds a matter term Smatter[g, ψ], the total action is:

Stotal[g, ψ] = SEH[g] + Smatter[g, ψ]. (4.588)

The energy–momentum tensor Tµν is defined by:

Tµν := − 2√
−g

δSmatter

δgµν
. (4.589)

Then, the total variation of Stotal gives the full Einstein equations:

Rµν − 1
2Rgµν = 8πGTµν . (4.590)
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4.18 Quantum particle near a black hole

4.18.1 Proper time and relativistic gravitational potential

In the vacuum outside an uncharged spherically symmetric black hole, the Schwarzschild metric
reads

ds2 = −
(

1 − rs
r

)
c2dt2 +

(
1 − rs

r

)−1
dr2 + r2dΩ2, rs = 2GM

c2 . (4.591)

1. Proper time of a static particle.
A particle static at coordinate r has dr = dθ = dφ = 0. The metric restricted to the
worldline gives

ds2 = −
(

1 − rs
r

)
c2dt2. (4.592)

By definition of the proper time dτ of a point particle we have ds2 = −c2dτ2. Hence

−c2dτ2 = −
(

1 − rs
r

)
c2dt2 =⇒ dτ =

√
1 − rs

r
dt. (4.593)

2. Effective energy linked to the clock rate.
If one assumes (heuristic postulate used here) that the proper frequency ν of a local clock
translates the total energy of the particle via E ∝ hν (analogy with E = mc2 at rest),
then the clock slowdown factor dτ/dt =

√
1 − rs/r implies that the energy measured "at

infinity" for a particle static at r is

E(r) = mc2
√

1 − rs
r
. (4.594)

Here mc2 is the "local" rest energy far from the gravitational well and the square root ex-
presses the effective reduction due to the potential.

3. Expansion for rs/r ≪ 1.
We expand the square root for ε := rs

r
≪ 1 :

√
1 − ε = 1 − ε

2 − ε2

8 + o(ε2). (4.595)

Replacing ε = rs/r = 2GM/(c2r) we obtain

E(r) = mc2
(

1 − 1
2
rs
r

− 1
8
r2
s

r2 + o
(r2

s

r2

))
. (4.596)

Replacing rs = 2GM/c2 :

E(r) = mc2 −mc2 1
2

2GM
c2r

−mc2 1
8

4G2M2

c4r2 + o
(r2

s

r2

)
= mc2 − GMm

r
− 1

2
G2M2m

c2r2 + o
(r2

s

r2

)
.

(4.597)

The first term aftermc2 is the Newtonian potential −GMm/r, the 1/r2 term is a relativistic
correction of order r2

s/r
2.

4. Effective potential.
By subtracting the rest energymc2 (one often calls "effective potential" the r-dependent part)
we define

Veff(r) = E(r) −mc2 = −GMm

r
− 1

2
G2M2m

c2r2 + o
(r2

s

r2

)
. (4.598)

This yields the requested expression.
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4.18.2 Expansion around the horizon

Set r = rs + x with x ≪ rs (so we are placed just outside the horizon).

1. Expansion of Veff(r).
Write explicitly

Veff(r) = −GMm

r
− 1

2
G2M2m

c2r2 . (4.599)

We expand each term in x around r = rs :

1
r

= 1
rs + x

= 1
rs

(
1 + x

rs

)−1
= 1
rs

(
1 − x

rs
+ o(x)

)
, (4.600)

1
r2 = 1

r2
s

(
1 + x

rs

)−2
= 1
r2
s

(
1 − 2 x

rs
+ o(x)

)
. (4.601)

Thus

Veff(rs + x) = −GMm

rs

(
1 − x

rs

)
− 1

2
G2M2m

c2r2
s

(
1 − 2 x

rs

)
+ o(x)

=
(

−GMm

rs
− 1

2
G2M2m

c2r2
s

)
︸ ︷︷ ︸

const

+
(GMm

r2
s

+ G2M2m

c2r3
s

)
x+ o(x).

(4.602)

We thus obtain a linear contribution in x dominated by the derivative V ′
eff(rs).

Note that, using rs = 2GM/c2, the sum of the linear coefficients simplifies :

G2M2m

c2r3
s

= 1
2
GMm

r2
s

, (4.603)

hence
Veff(rs + x) = const + 3

2
GMm

r2
s

x+ o(x). (4.604)

Thus the exact slope (including the relativistic correction) is 3
2GMm/r2

s .

2. Identification of an effective linear potential.
We obviously note that:

geff = 3
2GMm/r2

s (4.605)

One then recognizes a linear potential identical to that of a uniform gravitational field near
a plane surface (form V = mgx). Physically this means that, over a small length x ≪ rs,
the variation of the potential is approximately constant: the local surface is "approximately
flat" and the local gravitational field is almost uniform (equivalence principle).

4.18.3 Quantum analysis of the linear potential

We now place ourselves in the local frame near the horizon and study the quantum mechanics of
a particle subject to the linear potential V (x) = mgeffx (up to a constant).

1. Schrödinger equation.
The wavefunction ψ(x) satisfies, in the one-dimensional position representation,

− ℏ2

2m
d2ψ

dx2 +mgeff xψ(x) = E ψ(x). (4.606)
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We assume here x ≥ 0 (immediate exterior of the horizon) and a physical behavior imposing
a boundary condition at x = 0 (see below).

2. Reduction to the Airy equation (change of variables).
Set

x0 := E

mgeff
(classical point where mgx = E) (4.607)

and the characteristic classical length

xc :=
( ℏ2

2m2geff

)1/3
. (4.608)

Introduce the dimensionless variable

ξ := x− x0

xc
. (4.609)

Compute the derivatives:

d
dx = 1

xc

d
dξ ,

d2

dx2 = 1
x2
c

d2

dξ2 . (4.610)

Substituting into the Schrödinger equation gives

− ℏ2

2m
1
x2
c

d2ψ

dξ2 +mgeff
(
x0 + xcξ

)
ψ = Eψ. (4.611)

Since mgeffx0 = E, the constant terms cancel and one obtains

− ℏ2

2m
1
x2
c

d2ψ

dξ2 +mgeffxc ξ ψ = 0. (4.612)

Choosing xc such that

ℏ2

2m
1
x2
c

= mgeffxc ⇐⇒ x3
c = ℏ2

2m2geff
, (4.613)

one obtains the standard Airy equation:

d2ψ

dξ2 − ξ ψ(ξ) = 0. (4.614)

3. Solutions: Airy functions.
The Airy equation ψ′′(ξ) − ξψ(ξ) = 0 admits two independent solutions denoted Ai(ξ) and
Bi(ξ). Passing the Schrödinger equation to momentum representation (Fourier transform),
one obtains an integral of the form,

ψ(ξ) = λ

∫
R

exp
[
i
(p3

3 + pξ
)]

dp (4.615)

This integral is even, yielding,

ψ(ξ) = λ

∫ ∞

0
cos[i

(p3

3 + pξ
)

]dp (4.616)

This function, Ai(ξ), is the bounded solution when ξ → +∞ while Bi(ξ) diverges exponen-
tially as ξ → +∞. In our physical problem we retain the solution Ai (to obtain a normalizable
wavefunction in the region x → +∞). Thus

ψ(x) = αAi
(x− x0

xc

)
, (4.617)
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with the normalization constant α fixed by

1 =
∫ +∞

0
|ψ(x)|2dx = |α|2xc

∫ +∞

−x0/xc

Ai2(ξ) dξ, (4.618)

so

α =
(
xc

∫ +∞

−x0/xc

Ai2(ξ) dξ
)−1/2

. (4.619)

(In practice α is often given implicitly; the exact expression requires numerical evaluation of
the integral.)

4. Boundary condition at x = 0 and quantization.
If we impose the physical condition ψ(0) = 0 (for example a Dirichlet condition at the
"boundary" x = 0, interpretable as a wall enforcing vanishing), then

ψ(0) = αAi
(−x0

xc

)
= 0 =⇒ Ai

(
−x0

xc

)
= 0. (4.620)

The zeros of Ai(s) are strictly negative real numbers denoted an (with a1 ≈ −2.33811, a2 ≈
−4.08795, . . .). Therefore

−x0

xc
= an =⇒ x0 = −anxc. (4.621)

Recalling x0 = E

mgeff
, we obtain the discrete series of bound energies

En = mgeffx0 = −anmgeffxc. (4.622)

Grouping powers one can write the compact form

En = −an
(ℏ2mg2

eff
2

)1/3
. (4.623)

Here −an > 0, so En > 0. This sequence (En) is strictly increasing with n (the an become
more negative) and the numerical values are obtained using tabulated zeros of Ai.

4.18.4 Asymptotic study of the zeros of Ai

The function Ai is the solution of

ψ′′(x) = xψ(x), lim
x→+∞

ψ(x) = 0, (4.624)

normalized by the usual condition (values at 0 fixed if needed). We denote this solution by Ai.

Study of the function Ai

1. Ai is C ∞ and its zeros are isolated.
Equation (4.624) is a linear ODE with analytic coefficients on R. By the existence-and-
uniqueness theorem (or by the theory of analytic ODEs), every solution is C ∞ (indeed ana-
lytic) on R. If Ai had an accumulation point of zeros x0, then by uniqueness for the ODE (all
derivatives would vanish at x0) we would obtain the identically zero solution, contradicting
the nontrivial decay condition. Hence the zeros are isolated.
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2. No zero on R+ and strictly positive sign for x > 0.
For x > 0 we have Ai′′(x) = xAi(x). Suppose there exists x0 > 0 such that Ai(x0) = 0.
Then Ai′′(x0) = 0. If Ai′(x0) = 0 then, by uniqueness, Ai ≡ 0 on R, contradiction. Thus
Ai′(x0) ̸= 0. If Ai′(x0) > 0, there exists δ > 0 such that for x ∈ (x0, x0 + δ) we have
Ai(x) > 0; then Ai′′(x) = xAi(x) > 0 on that interval, hence Ai′ is strictly increasing and
remains > Ai′(x0) > 0 for x > x0, which forces Ai(x) → +∞ as x → +∞, contradicting
the decay condition. The same reasoning applies if Ai′(x0) < 0. Therefore there is no zero
x0 > 0. Moreover Ai(0) > 0 (known value), hence Ai(x) > 0 for all x > 0.

3. Negation of positivity on R∗
−.

Suppose for contradiction that Ai(x) > 0 for all x < 0.

(a) Since x < 0 and Ai(x) > 0, we have Ai′′(x) = xAi(x) < 0 for x < 0. Hence Ai′ is
strictly decreasing on (−∞, 0] and the limit

ℓ := lim
x→−∞

Ai′(x) ∈ [−∞,+∞) (4.625)

exists.
(b) Case ℓ ∈ R∗ (nonzero finite).

If ℓ ∈ R∗, then Ai′ tends to ℓ as x → −∞. The improper integral∫ 0

−∞
Ai′′(t) dt = Ai′(0) − lim

x→−∞
Ai′(x) = Ai′(0) − ℓ (4.626)

converges. Therefore Ai′′(t) → 0 as t → −∞. But Ai′′(t) = tAi(t); since t → −∞, for
tAi(t) → 0 we must have Ai(t) = o(1/|t|). Integrating Ai′(t) → ℓ gives for t → −∞

Ai(t) = Ai(0) −
∫ 0

t

Ai′(s) ds = −ℓt+ o(|t|), (4.627)

so Ai(t) ∼ −ℓt. But −ℓt as t → −∞ tends to +∞ if ℓ < 0 or −∞ if ℓ > 0, contradicting
Ai(t) = o(1/|t|). Thus ℓ cannot be a nonzero finite real.

(c) Case ℓ = 0.
Suppose ℓ = 0. For any ε > 0 there exists M < 0 such that for x < M , Ai′(x) > −ε.
Integrating on [x,M ] we get for x < M

Ai(x) = Ai(M) +
∫ x

M

Ai′(t) dt > Ai(M) − ε|x−M |. (4.628)

Sending x → −∞ yields Ai(x) → +∞, contradicting the assumed bounded positivity
(the solution cannot diverge like that because then Ai′′ = xAi would become very
negative). Hence ℓ ̸= 0.

(d) Case ℓ = −∞.
Suppose Ai′(x) → −∞ as x → −∞. Fix M < 0. By the intermediate value theorem
applied to Ai′ (continuous and decreasing), there exists χ < 0 such that for all t < χ,

Ai′(t) < M. (4.629)

Integrating twice (and using Ai′′(t) = tAi(t)) yields a strong negative growth of Ai
incompatible with the assumed positivity. More explicitly, if Ai′(t) → −∞, then Ai(t)
becomes strictly decreasing and tends to −∞ as t → −∞, contradiction. (This gives
the contradiction.)

The three subcases lead to contradictions: the assumption Ai > 0 on R∗
− is impossible.

Therefore Ai has at least one zero on R−.
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Existence of a countably infinite number of zeros

For x ≤ 0 the equation can be written

Ai′′(x) + |x| Ai(x) = 0. (4.630)

For n ∈ N∗ set xn := −n2 and In := [xn, xn + δn] with δn := 2π
n

.

1. For x ∈ In write x = −n2 + s with 0 ≤ s ≤ 2π/n. Then

|x| = n2 − s = n2 + εn(x), εn(x) = −s = O
( 1
n

)
. (4.631)

2. We then set, on In,

Ai′′(x) + n2Ai(x) = fn(x), fn(x) := −εn(x)Ai(x). (4.632)

3. Variation of parameters on In.
Consider the homogeneous basis

y1(x) := cos
(
n(x− xn)

)
, y2(x) := sin

(
n(x− xn)

)
. (4.633)

Any solution y ∈ C 2(In) of the nonhomogeneous equation can be written (variation of
parameters)

y(x) = un(x)y1(x) + vn(x)y2(x), (4.634)

with un, vn ∈ C 1(In). The linear map

Φx : (u, v) 7→ (uy1(x) + vy2(x), uy′
1(x) + vy′

2(x)) (4.635)

is an isomorphism of R2 (the Wronskian W (y1, y2) = n ̸= 0). Extending pointwise gives
the C 1 isomorphism by imposing the auxiliary condition

u′
n(x)y1(x) + v′

n(x)y2(x) = 0, (4.636)

which uniquely fixes the representation (choice of a section of the kernel). Differentiating
yields

y′(x) = u′
n(x)y1(x)+un(x)y′

1(x)+v′
n(x)y2(x)+vn(x)y′

2(x) = un(x)y′
1(x)+vn(x)y′

2(x).
(4.637)

Differentiating again and substituting into y′′ + n2y = fn gives the system for the deriva-
tives u′

n, v
′
n: {

u′
n(x)y1(x) + v′

n(x)y2(x) = 0,
u′
n(x)y′

1(x) + v′
n(x)y′

2(x) = fn(x).
(4.638)

Solving (Cramer’s rule) and since W (y1, y2) = y1y
′
2 − y′

1y2 = n,

u′
n(x) = −fn(x) y2(x)

n
, v′

n(x) = fn(x) y1(x)
n

. (4.639)

Hence, for x ∈ In,

un(x) − un(xn) = − 1
n

∫ x

xn

fn(t) sin
(
n(t− xn)

)
dt, (4.640)

vn(x) − vn(xn) = 1
n

∫ x

xn

fn(t) cos
(
n(t− xn)

)
dt. (4.641)
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4. Estimates on In.
We have |εn(x)| ≤ C/n and Ai is bounded on In (continuity on a compact), hence

∥fn∥L∞(In) = O
( 1
n

)
. (4.642)

Thus

|un(x) − un(xn)| ≤ 1
n

|x− xn| ∥fn∥L∞(In) ≤ 1
n

· 2π
n

· O
( 1
n

)
= O

( 1
n3

)
, (4.643)

and similarly for vn(x) − vn(xn). In particular un, vn are almost constant on In (variations
are O(n−3)), hence also O(n−2).

5. Approximation and consequence.
Set an := un(xn) and bn := vn(xn). For x ∈ In we have

y(x) = un(x)y1(x) + vn(x)y2(x)

= an cos
(
n(x− xn)

)
+ bn sin

(
n(x− xn)

)
+ O

( 1
n2

)
,

(4.644)

where the error comes from the small variations of un, vn and from integrating u′
n, v

′
n. Ap-

plying this to y = Ai and using the compactness of In, we obtain uniform convergence
y → Ai on In by the method of approximating functions (the error terms tend to 0 as
n → ∞).
If Ai does not vanish on In, then the main trigonometric combination

an cos
(
n(x− xn)

)
+ bn sin

(
n(x− xn)

)
(4.645)

must have constant sign on In (since it is uniformly close to the single-sign function Ai on
In).

6. Any nontrivial combination

an cos
(
n(x− xn)

)
+ bn sin

(
n(x− xn)

)
(4.646)

can be written as

rn cos
(
n(x− xn) − φn

)
, rn =

√
a2
n + b2

n, φn = arctan bn
an
. (4.647)

Such a function changes sign on any interval whose length is strictly greater than π/n. But
|In| = 2π/n > π/n. Thus if the trigonometric combination were to remain of constant sign
on In, we would necessarily have |In| < π/n, contradiction. Consequently Ai must have at
least one zero in In for every sufficiently large n.

7. Conclusion: there exists at least one zero of Ai in each In (for large n), which yields a count-
ably infinite number of strictly negative zeros tending to −∞. We order these negative zeros

c1 < c2 < · · · < 0 (4.648)

and set wn := −cn > 0.
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Integral representation and qualitative study

We admit the representation

Ai(x) = 1
π

∫ +∞

0
cos
( t3

3 + xt
)

dt = 1
2π

∫ +∞

−∞
eifx(t) dt, fx(t) := t3

3 + xt, (4.649)

and we set
h(x) :=

∫ ∞

0
eifx(t) dt. (4.650)

1. Convergence and continuity of h.

(a) We have h(x) =
∫∞

0 eifx(t)dt. The work focuses on the convergence of this improper
integral and on regularity with respect to x.

(b) Study of fx. f ′
x(t) = t2 + x, f ′′

x (t) = 2t. The minimum of f ′
x on [0,∞) is attained

at t = 0 and equals f ′
x(0) = x. In particular for x ≥ 0, f ′

x(t) ≥ x ≥ 0 (no zeros). For
x < 0 the derivative vanishes at t0(x) =

√
|x|.

(c) Convergence of h.
Choose R > 0. We write

h(x) =
∫ R

0
eifx(t)dt+

∫ ∞

R

eifx(t)dt. (4.651)

The first integral is over a compact set so it converges and depends continuously on x.
For the tail, for t ≥ R we have |f ′

x(t)| ≥ t2 − |x|. Choose R such that R2 > |x| + 1;
then |f ′

x(t)| ≥ ct2 for t ≥ R (with c > 0 uniform for x in a compact). Integrating by
parts:∫ ∞

R

eifx(t)dt =
∫ ∞

R

1
if ′
x(t)

d
dt
(
eifx(t))dt =

[eifx(t)

if ′
x(t)

]∞

R
+
∫ ∞

R

eifx(t) f ′′
x (t)

(if ′
x(t))2 dt.

(4.652)
The boundary terms and the integral are controlled by bounds of the formC

∫∞
R
t−2dt <

∞. Thus the tail converges absolutely and uniformly for x in any compact. Hence h(x)
is well defined for all x.

(d) Continuity of h.
Let x, y be close. On [0, R] the function eifx(t) depends continuously on x and the
difference of the integrals tends to 0 by uniform convergence on this compact. For the
tail [R,∞) the previous integration-by-parts estimate provides a uniform bound for
x, y in a compact; letting R → ∞ then y → x yields h(y) − h(x) → 0.

(e) C1-regularity.
One checks that ∂xeifx(t) = iteifx(t). To show that h′(x) =

∫∞
0 iteifx(t)dt exists

and is continuous, treat the tail as before by integration by parts replacing eifx(t) with
teifx(t) and use the same majorations (for large t, t/(f ′

x(t)) decays like 1/t). Dominated
convergence arguments (after an integration by parts) then ensure differentiability and
continuity of h′.

2. Decay of Ai(x) for x → +∞ (saddle-point method).
Consider fx(t) = xt+ t3

3 and extend t 7→ eifx(t) analytically to C. The stationary points are
solutions of f ′

x(t) = t2 + x = 0, namely

t⋆ = ±i
√
x. (4.653)
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We choose the saddle t⋆ = i
√
x which satisfies, after computation, Re(ifx(t⋆)) < 0 (con-

tributing to exponential decay). Deform the real contour into a contour Γx passing through
t⋆ following the steepest descent direction. In a neighborhood of t⋆ set t = t⋆ + z and
parameterize z = ux−1/4, u ∈ R. Taylor expansion:

fx(t) = fx(t⋆) + 1
2f

′′
x (t⋆) z2 + 1

6f
(3)
x (ξ) z3, (4.654)

with f ′′
x (t⋆) = 2t⋆ = 2i

√
x and f (3)

x ≡ 2. Multiplying by i and substituting z = ux−1/4

gives
ifx(t) = ifx(t⋆) − u2 + i O

(
u3x−3/4), (x → ∞), (4.655)

uniformly for |u| ≤ M . Thus, locally,

eifx(t) = eifx(t⋆)e−u2(
1 + o(1)

)
. (4.656)

The change dt = x−1/4du yields for the neighborhood |u| ≤ M∫
|u|≤M

eifx(t)dt = eifx(t⋆)x−1/4
(∫

|u|≤M
e−u2

du
)

(1 + o(1)). (4.657)

The contribution of the tails |u| > M is controlled by the decay of e−u2 and can be made
arbitrarily small independently of x. On the rest of the contour Γx\ (neighborhood of t⋆) one
has Re(ifx(t)) ≤ −cx3/2 for some constant c > 0, hence an exponential bound negligible
compared to x−1/4e−2x3/2/3.
Computation of the main contribution: compute ifx(t⋆) with t⋆ = i

√
x:

ifx(i
√
x) = i

(
xi

√
x+ (i

√
x)3

3

)
= i
(
ix3/2 − ix3/2

3

)
= −2

3x
3/2. (4.658)

Collecting terms we obtain the equivalent

Ai(x) ∼ 1
2
√
π
x−1/4e− 2

3x
3/2
, (x → +∞), (4.659)

hence Ai(x) → 0 exponentially fast.

Asymptotic approximation of Ai(−x) for x → +∞

We now set, for x > 0,
fx(t) := t3

3 − xt. (4.660)

1. The stationary point of fx on [0,∞) is the solution of f ′
x(t) = t2 − x = 0, hence

t0 =
√
x, (4.661)

which is unique on [0,∞).

2. For fixed δ > 0, if |t− t0| ≥ δ then |t2 − x| = |f ′
x(t)| ≥ cδ > 0, by continuity and because

f ′
x vanishes only at t0.

3. If 0 ≤ a < b and min[a,b] |f ′
x| ≥ cδ > 0, integration by parts gives∫ b

a

eifx(t)dt =
[eifx(t)

if ′
x(t)

]b
a

+
∫ b

a

eifx(t) f ′′
x (t)

(if ′
x(t))2 dt, (4.662)

whence the bound ∣∣∣ ∫ b

a

eifx(t)dt
∣∣∣ ≤ 2

cδ
+ (b− a) sup

[a,b]

∣∣∣ f ′′
x (t)

f ′
x(t)2

∣∣∣. (4.663)
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4. Contribution outside the neighborhood of t0.
For |t− t0| ≥ δ one has a uniform lower bound |f ′

x(t)| ≥ cδ . By applying several successive
integrations by parts (each integration by parts gives a factor 1/f ′

x), the contribution outside
the neighborhood is o(x−1/4) as x → ∞.

5. Expansion near t0.
For |t− t0| ≤ δ we have the Taylor expansion

fx(t) = fx(t0) + f ′′
x (t0)

2 (t− t0)2 +Rx(t), (4.664)

with f ′′
x (t0) = 2t0 = 2

√
x and f (3)

x (t) = 2. The remainder is

Rx(t) = f
(3)
x (ξ)

6 (t− t0)3, (4.665)

so |Rx(t)| ≤ C|t− t0|3 for |t− t0| ≤ δ.

6. For all t, the elementary inequality |eiRx(t) − 1| ≤ |Rx(t)| holds.

7. Set
εx :=

∫
|t−t0|≤δ

eifx(t0)ei
f′′

x (t0)
2 (t−t0)2

(eiRx(t) − 1)dt. (4.666)

With the remainder bound one obtains |εx| ≤ C ′δ4 (the factor δ4 comes from integrating a
term in |t− t0|3 over an interval of length 2δ after a suitable rescaling).

8. Gaussian change of variable.
Set

s = (t− t0)
√
f ′′
x (t0)

2 = (t− t0)x1/4. (4.667)

Then ∫
|t−t0|≤δ

ei
f′′

x (t0)
2 (t−t0)2

dt =

√
2

f ′′
x (t0)

∫
|s|≤Sx

eiσs
2
ds, (4.668)

with σ = sign(f ′′
x (t0)) = +1 and Sx = δx1/4 → +∞ as x → ∞.

9. As Sx → ∞, the limit of the truncated integral equals the complete Fresnel integral:∫ +∞

−∞
eis

2
ds =

√
π eiπ/4. (4.669)

10. Assembly and final result.
Collecting the main contribution (neighborhood of t0) and the negligible outside contribu-
tion, we obtain ∫ ∞

0
eifx(t)dt ∼ eifx(t0)

√
2

f ′′
x (t0) ·

√
π eiπ/4

2 (x → ∞). (4.670)

Numerical computations: fx(t0) = 2
3x

3/2 and f ′′
x (t0) = 2

√
x. Hence, reverting to the

definition of Ai,

Ai(−x) = 1
π

Re
(∫ ∞

0
eifx(t)dt

)
∼ 1√

π
x−1/4 cos

(
2
3x

3/2 − π
4

)
. (4.671)

The explicit constant is C = 1/
√
π.
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Asymptotic expansion of the sequence (wn)

1. From the equivalent

Ai(−x) ∼ C

x1/4 cos
(2

3x
3/2 − π

4

)
, (x → +∞), (4.672)

the zeros wn (for which Ai(−wn) = 0) satisfy asymptotically

cos
(2

3w
3/2
n − π

4

)
= 0. (4.673)

2. The zeros of the cosine function are given by

2
3w

3/2
n − π

4 =
(
k + 1

2

)
π, k ∈ Z. (4.674)

Setting n = k + 1 (positive indexing of the zeros), one obtains

2
3w

3/2
n = π

(
n− 1

4

)
. (4.675)

3. Hence the first asymptotic approximation

wn ∼
(

3π
2
(
n− 1

4
))2/3

. (4.676)

Asymptotic expansion of the zeros wn to order O(1/n2)

We set the first approximation

αn :=
(

3π
2
(
n− 1

4
))2/3

, (4.677)

and seek wn = αn + βn with βn = o(αn).

1. Expansion of (αn + βn)3/2.
Using Newton’s expansion for the exponent 3/2,

(α+ β)3/2 = α3/2 + 3
2α

1/2β − 3
8α

−1/2β2 + O
(
α−3/2β3

)
. (4.678)

Multiplying by 2/3 gives

2
3(α+ β)3/2 = 2

3α
3/2 + α1/2β − 1

4α
−1/2β2 + · · · . (4.679)

2. Equation satisfied by wn.
In fact the zeros satisfy the exact equation coming from the vanishing of the full asymptotic
expansion:

cos
(2

3w
3/2
n − π

4

)
+ ∆(wn) = 0, (4.680)

where ∆(w) represents higher-order terms in the asymptotic expansion (typically O(w−3/2)
and smaller). We therefore set

2
3w

3/2
n = π

(
n− 1

4

)
+ εn, εn −→

n→∞
0. (4.681)
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Substituting the expansion from the previous item and using 2
3α

3/2
n = π(n− 1

4 ), we obtain

α1/2
n βn − 1

4α
−1/2
n β2

n + · · · = εn. (4.682)

To get βn at leading order we keep the linear term in βn :

βn ∼ α−1/2
n εn. (4.683)

The explicit value of εn comes from the next term of the asymptotic expansion of Ai(−x).
Indeed (standard asymptotic expansion),

Ai(−x) ∼ 1√
π
x−1/4

{
cos
(2

3x
3/2 − π

4

)
+ 5

48x
−3/2 sin

(2
3x

3/2 − π

4

)
+O(x−3)

}
. (4.684)

Setting Φ(x) := 2
3x

3/2 − π

4 , the vanishing gives

cos Φ(wn) + 5
48w

−3/2
n sin Φ(wn) + O(w−3

n ) = 0. (4.685)

Write Φ(wn) = (n− 1
4 )π + ηn with ηn → 0. Then

cos Φ(wn) = (−1)n cos ηn ∼ (−1)n(1 − 1
2η

2
n), sin Φ(wn) = (−1)n sin ηn ∼ (−1)nηn.

(4.686)
Substituting into the vanishing condition:

(−1)n
(
1 − 1

2η
2
n

)
+ 5

48w
−3/2
n (−1)nηn + O(w−3

n , η3
n) = 0. (4.687)

At leading order in small quantities one obtains

1 + 5
48w

−3/2
n ηn + O(η2

n, w
−3
n ) = 0, (4.688)

which forces ηn = −48
5 w

3/2
n + O(w3/2

n η2
n), but this equation shows that a direct expansion

in ηn requires the correct ordering: in practice one rather solves

tan Φ(wn) = −48
5 w

3/2
n + O(w3/2−3/2

n ) = O(w3/2
n ), (4.689)

and using the approximation Φ(wn) = (n− 1
4 )π + ηn with small ηn one arrives at

ηn = − 5
48 w

−3/2
n + O(w−9/2

n ). (4.690)

Returning to the expression of βn via εn = ηn and to the expansion

α1/2
n βn ∼ εn ∼ − 5

48α
−3/2
n , (4.691)

we obtain
βn ∼ − 5

48 α
−2
n . (4.692)

For readability we rewrite this correction in the classically used form (even if exponents can
be presented differently depending on conventions):

wn = αn − 5
48 α

−2
n + O(α−5

n ). (4.693)

(The exact powers of the correction terms depend on the conventions of the expansion; the
important point is that the leading correction decays as a high negative power of n.)
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3. Expansion in terms of n.
Expanding αn for large n and inserting the correction βn, one gets explicitly, at the first
useful order,

wn =
(

3π
2

(
n− 1

4

))2/3
− 5

48

(
3π
2

(
n− 1

4

))−4/3
+ O

(
n−10/3). (4.694)

Energy of the bound states

Recall: the energy of the bound states found earlier is written

En = wn E , E :=
(ℏ2mg2

eff
2

)1/3
, (4.695)

so, replacing wn = αn + βn,

En = E αn + E βn + O(α−5
n E). (4.696)

Using the previous expressions for αn and βn one obtains the explicit expansion (order O(1/n2)
in the sense of powers of n)

En = E
(

3π
2
(
n− 1

4
))2/3

− E 5
48

(
3π
2
(
n− 1

4
))−4/3

+ · · · . (4.697)

Numerical estimate for M = M⊙. We take M = M⊙ and evaluate the order of magnitude of
the levels for two common particle masses.

• Useful parameters.

rs = 2GM
c2 , and (approximate Newtonian expression retained for geff )

geff ≃ GM

r2
s

= c4

4GM . (4.698)

Set E =
(
ℏ2mg2

eff/2
)1/3.

• Electron case.
For m = me (electron mass), replacing the numerical constants one finds

E ≈ 1,05 × 10−24 J ≈ 6.6 × 10−6 eV. (4.699)

The ground level (n = 1) gives

E1 ≈ E α1 ≈ 2.4 × 10−24 J ≈ 1.5 × 10−5 eV. (4.700)

• Proton case.
For m = mp (proton mass),

E ≈ 3.0 × 10−23 J ≈ 1.9 × 10−4 eV, (4.701)

and
E1 ≈ 3.0 × 10−23 · α1 ≈ 3.0 × 10−23 J ≈ 1.9 × 10−4 eV. (4.702)

The energy levels are extremely small (micro-electronvolts and below) for elementary particle
masses, even near the horizon of a Sun-mass black hole. This means that the quantum "bound
levels" in this model are very close to each other and to an effective continuum at usual energy
scales; moreover, interactions with the environment (absorption by the horizon, decoherence, col-
lisions, etc.) overwhelmingly dominate and make these levels hardly observable.
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4.18.5 Horizon, absorption and decoherence

1. The oscillatory decay towards x → −∞ :

Ai(x) ∼ C

|x|1/4 cos
(2

3 |x|3/2 − π

4

)
(x → −∞) (4.703)

does not remove the possibility of leakage to the interior: the wavefunction has an oscillatory
component that carries a nonzero probability current to the left (into the black hole). The
amplitude decays slowly in a power-law manner, but this decay does not prevent a locally
nonzero flux; physically the barrier is not perfect and a small but nonzero escape rate exists.

2. Consequently, the state is not strictly stationary in the sense of a normalizable bound state in
L2(R) over the whole line: it loses norm in the exterior region as probability "leaks" towards
x → −∞. Mathematically, the norm ∥Ψ(·, t)∥L2 decreases over time.

3. Modeling by a complex energy.
If one replaces the real energy E by a complex energy E − iΓ/2 (Γ > 0), the time evolution
of an eigenstate becomes

Ψ(t) = Ψ(0) e−iE
ℏ t e− Γ

2ℏ t. (4.704)

The norm evolves as
∥Ψ(t)∥ = ∥Ψ(0)∥ e− Γ

2ℏ t, (4.705)

so it decays exponentially with time constant τ = 2ℏ
Γ .

4. Analogy with radioactive decay.
This exponential decay is strictly analogous to the behavior of a population of radioactive
atoms: the survival probability of a quasi-stationary state decays exponentially with rate
Γ/ℏ. Just as nuclear decay measures the transition probability out of a bound state, here Γ
quantifies the escape (absorption) rate through the horizon.

4.18.6 Opening: Hawking radiation and thermal temperature

1. Action of a particle in the Schwarzschild metric.

(a) Relativistic Lagrangian (radial motion).
For a trajectory parameterized by λ (arbitrary), the interval reads

ds2 = −f(r)c2dt2 + f(r)−1dr2, f(r) := 1 − rs
r
. (4.706)

The relativistic Lagrangian (proportional to the arc length) can be written

L = −mc
√

−gµν ẋµẋν = −mc
√
f(r)c2ṫ2 − f(r)−1ṙ2 , (4.707)

where ˙≡ d
dλ .

(b) Classical action.
By definition,

S =
∫

L dλ = −mc
∫ √

−gµν ẋµẋν dλ = −mc
∫

ds. (4.708)
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(c) Conservation of energy and radial velocity.
The Lagrangian does not depend explicitly on t, so the conjugate quantity

pt = ∂L
∂cṫ

= − mc2f(r)ṫ√
f(r)c2ṫ2 − f(r)−1ṙ2

(4.709)

is conserved. We set pt = −E
c (definition of the constant energy along the trajec-

tory). We choose the proper parameter λ = τ (proper time) when useful: in that case√
fc2ṫ2 − f−1ṙ2 = c and the expression simplifies; a more direct relation follows from

the energy conservation (Noether) applied to the stationary metric:

E = mc2f(r) dt
dτ . (4.710)

The metric constraint (norm of the 4-velocity) gives

−c2 = gµν
dxµ

dτ
dxν

dτ = −f(r)c2
( dt

dτ

)2
+ f(r)−1

(dr
dτ

)2
. (4.711)

Isolating ṙ := dr
dτ , (dr

dτ

)2
= E2

m2c2 − f(r)c2. (4.712)

If one assumes E ≫ mc2 (massless / high-energy approximation), the term f(r)c2 can
be neglected inside the square root, hence to leading order

dr
dτ ≃ ± E

mc
(approx.). (4.713)

This relation gives the scale of the radial velocity as a function of E and r.

2. Effective form of the radial action (Hamilton–Jacobi).

(a) Relativistic Hamilton–Jacobi equation.
We know that

pµp
µ +m2c2 = 0. (4.714)

Now pµ = ∂L
∂ẋµ . Note that,

∂µS =
∫
∂µL dλ (4.715)

Euler-Lagrange=
∫ d

dλ

(
∂L
∂ẋµ

)
dλ (4.716)

=
∫

d
(
∂L
∂ẋµ

)
(4.717)

= pµ (4.718)

Hence,
∂µS∂

µS +mc2 = 0 (4.719)
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(b) Radial action at fixed energy.
We look for a separated solution S = −Et + Sr(r) + (angles). For a purely radial
trajectory one obtains from the Hamilton–Jacobi equation:

− E2

c2f(r) + f(r)
(
S′
r(r)

)2 +m2c2 = 0. (4.720)

Isolating S′
r yields

S′
r(r) = pr(r) = ± 1

f(r)

√
E2

c2 −m2c2f(r). (4.721)

The radial (classical) action is then

Sr =
∫
pr(r) dr. (4.722)

(c) High-energy / nearly massless approximation.
If E ≫ mc2 and near the horizon f(r) → 0, one can neglect m2c2f(r) compared to
E2/c2. Then

pr(r) ≃ ± 1
f(r)

E

c
. (4.723)

This is the form used to study the tunneling effect near r = rs.

3. Tunneling effect and complex integral.

(a) Singularity at r = rs and complex detour.
Near r = rs, f(r) = 1 − rs

r
vanishes and pr has a simple pole. The integral

Sr =
∫ rout

rin

E

c

dr
f(r) (4.724)

(with rin < rs < rout) diverges on the real axis. One circumvents the pole by deforming
the path into the complex plane (Cauchy’s theorem). The imaginary part of the action
is given by the residue contribution.

(b) Contour calculation (residue).
Consider the closed contour γ simply enclosing r = rs. The contribution is

S =
∮
γ

pr dr = E

c

∮
γ

dr
f(r) . (4.725)

Compute the residue of 1/f(r) at r = rs. Set r = rs + ρ. To first order,

f(r) = 1 − rs
r

= r − rs
r

= ρ

rs
+ O(ρ2), (4.726)

thus 1
f(r) ∼ rs

ρ
. Therefore

∮
γ

dr
f(r) = 2πi Res

( 1
f
, rs

)
= 2πi rs. (4.727)

Finally
S =

∮
γ

prdr = E

c
2πirs. (4.728)
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(c) WKB transmission rate and emission probability.
The standard WKB formula for a barrier gives an amplitude proportional to exp

(
− i

ℏScl
)

and a transmission probability proportional to exp
(
− 2

ℏ ImScl
)
. Here S is purely imag-

inary (proportional to i), hence

ImS = 2πErs
c
. (4.729)

The tunneling (emission) probability is therefore

P(E) ∝ exp
(

− 2
ℏ

ImS
)

= exp
(

−4πErs
ℏc

)
. (4.730)

Replacing rs = 2GM
c2 , one finally obtains

P(E) = exp
(

−8πGME

ℏc3

)
. (4.731)

(This expression corresponds to a Boltzmann law for an effective temperature.)

4. Identification with a thermal law.
Compare P(E) to the form exp(−E/(kBT )). We identify

1
kBTH

= 8πGM
ℏc3 =⇒ TH = ℏc3

8πGMkB
(4.732)

which is the Hawking temperature of the Schwarzschild black hole (standard result).

5. Energy and entropy of the black hole.

The elementary energy transfer is dE = c2dM . In reversible thermodynamics dS = dE
TH

,
hence

dS = c2dM
TH

= c2dM · 8πGMkB
ℏc3 = 8πGkB

ℏc
MdM. (4.733)

Integration yields:

S(M) = 8πGkB
ℏc

· M
2

2 + const. = 4πGkB
ℏc

M2 + const. (4.734)

Expressing this entropy in terms of the area Σ = 4πr2
s = 16πG2M2

c4 , one obtains

S = 4πGkB
ℏc

· c4

16πG2 Σ = kBc
3

4Gℏ Σ + const. (4.735)

The integration constant is fixed by choosing a reference (usually set to zero), hence the
Bekenstein–Hawking formula:

S = kBc
3

4Gℏ Σ . (4.736)

6. Physical discussion (brief remarks).

(a) Why proportional to area and not volume?
The entropy being proportional to the area reflects the holographic nature of gravita-
tional degrees of freedom: the information (or number of microstates) associated with a
black hole appears to be encoded on the horizon surface rather than in the volume, un-
like ordinary thermodynamic systems. This is compatible with the idea that quantum
gravity drastically reduces the effective number of local degrees of freedom.
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(b) Open questions.
The formula raises several fundamental questions: what are the microstates counted
by the entropy? how to reconcile unitary quantum evolution with the apparent loss
of information (the information paradox)? what is the microscopic description in a
candidate theory of quantum gravity (strings, loops, etc.)?

7. Evaporation time of a black hole.

We estimate the energy loss by radiation using the Stefan–Boltzmann law in the blackbody
approximation (to be taken as a rough estimate).

L = 4πr2
sσT

4
H , (4.737)

with σ the Stefan–Boltzmann constant.

(a) Evolution equation for the mass.
The energy lost per unit time is d

(
Mc2) /dt = −L. Thus

d
(
Mc2)
dt = −4πr2

sσT
4
H . (4.738)

Rearranging,
dM
dt = −4πr2

sσT
4
H

c2 . (4.739)

(b) Substitution and simplification.

Replace rs = 2GM/c2 and TH = ℏc3

8πGMkB
. Use σ = π2k4

B

60ℏ3c2 . After simplification
one obtains the law

dM
dt = − 1

15360π
ℏc4

G2
1
M2 . (4.740)

(The numerical constant arises from combining the factors 4π, the 22 from r2
s , and the

powers appearing in T 4
H and σ.)

(c) Integration and total evaporation time.
Separating and integrating from M to 0,∫ 0

M

M2dM = −K
∫ te

0
dt, K := ℏc4

15360πG2 . (4.741)

One obtains
M3

3 = Kte =⇒ te = M3

3K = 5120π G2

c4ℏ
M3. (4.742)

Hence

te = 5120π G2

c4ℏ
M3 . (4.743)

(d) Order of magnitude for M⊙.
Numerically (SI values),

te(M⊙) ≈ 6.6 × 1074 s ≈ 2.1 × 1067 years. (4.744)

(e) Comparison with the age of the universe.
The current age of the universe is tuniv ∼ 1.38 × 1010 years ≪ te(M⊙). Conclusion:
the evaporation of stellar black holes is totally negligible on the current cosmological
timescale; a solar-mass black hole will take far, far longer than the age of the universe
to evaporate.
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(f) Primordial black hole of mass 1012 kg.
For M = 1012 kg one finds

te(1012 kg) ≈ 8.4 × 1019 s ≈ 2.7 × 1012 years, (4.745)

which is still much larger than the current age of the universe. Thus a primordial
black hole of mass 1012 kg would not yet be completely evaporated today (and its final
emission, if observable, has not necessarily occurred).
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